Continuing Preparations

While the commander was tending to the LM's guidance needs, the LMP continued his checks with the activation of the communications system. Communications to the CSM were handled by two VHF antennae mounted fore and aft. Those to Earth, as well as the same ranging and tracking functions as found on the CSM, used either of two low-gain S-band antennae, also mounted fore and aft, and a steerable, high-gain dish mounted high on the right-hand side of the ascent stage that could keep itself aimed towards Earth.

For the descent, the electrical power for the LM came from batteries mounted in the descent stage. Originally, the lunar module's manufacturer, Grumman, had intended to power it with fuel cells, in a manner similar to the CSM and most of the Gemini spacecraft. Managerial and technical difficulties, mostly concerned with the interdependence of the power system with other systems in the already exotic LM, conspired with the race to get the spacecraft ready on time, forcing NASA and Grumman to use batteries as the power source. Though heavy, batteries had the enormous advantage of simplicity, and since the LM was intended to be powered for only a few days, their weight penalty was no worse than the fuel cells. As part of the checkout of the LM, their health was closely studied, as were the extra set required for the ascent stage. The ascent stage carried its own small set of batteries because it operated on its own for only a few hours for the trip from the surface of the Moon up to the CSM.

Another major item in the LMP's checklist was the cooling system. Whereas the CSM used radiators and evaporators to lose heat from a water/glycol coolant, the LM relied on a sublimator. These devices cooled by having ice directly sublimate to water vapour which took heat away from the coolant in the process, the same cooling technique was used in the lunar space suits. Because it had no source of water available as a by-product of fuel cell operation, a large water tank was included in the descent stage, with a smaller supply in the ascent stage. The water/ glycol coolant was pumped between the LM's electronics and the sublimator by redundant sets of pumps. The pressures delivered by these pumps were checked before committing the LM to the surface.

Manoeuvring the LM was effected by a set of thrusters similar to the RCS jets mounted on the service module. Where each cluster of jets on the SM had independent propellant supplies, those on the lunar module had a common propellant system that could be topped up from the propellant used by the ascent stage's main rocket engine if the need arose. As a further difference, the service module's RCS quads were mounted on the spacecraft axes, while those for the LM were set at the corners of a square set around the spacecraft to keep the windows and hatchway clear. Before it could be used, the propellant system had to be pressurised. An explosively operated valve was opened to allow helium gas into the propellant tanks, at which point the crew and mission control could verify that the pressures within the system were as expected.

Angel Ascendancy

Angel Ascendancy

Be Prepared To See Massive Changes In Your Destiny Guided By The Archangels. This Book Is One Of The Most Valuable Guide To Communicate With Archangels For Life.

Get My Free Ebook

Post a comment