Implications For Mars Sample Return

The results presented in this case study indicate that any sample returned from Mars should be investigated for the presence of biofilm remnants. Our findings confirm the relevance of searching impact-induced hydrothermal deposits for evidence of microbial life on Mars. Impact-induced hydrothermal deposits have been shown to be exposed at the surface after an impact (Osinski et al., 2001; Newsom et al., 2001), which means that it would be possible to access the outer regions of impact structures where life could have resided (Hode et al., 2003). Given the availability of necessary microanalytical tools and a sample preparation procedure designed to reveal traces of life trapped inside hydrothermal mineral matrices, it is likely that traces of microbial life, if it has existed on Mars, could be revealed in even a very limited sample set from the red planet. For example, confocal (Schopf et al., 2006) microscopy and Raman spectroscopy (Schopf et al., 2005) can reveal preserved cells in a transparent mineral matrix, and as shown here, Rutherford backscattering and SEM can reveal preserved traces of biofilms in mineral etched samples.

6. Summary

We have shown that ancient impact-induced hydrothermal systems are favorable sites for the preservation of remnants of biofilm-forming microbial communities. At least two possibilities exist. First, an impact-induced hydrothermal system can supported a subsurface biofilm-forming community in the extensive fracture system through which hydrothermal fluids circulated. Mineralization of microbial biofilm remnants would be expected under such conditions. Second, the eventual infilling of the fractures by mineral precipitates can entrap any remnant biofilms, whether autochtonous or allocthonous. Our findings confirm the relevance of searching impact-induced hydrothermal deposits for evidence of ancient microbial life on Mars (Newsom et al., 2001).

7. Acknowledgements

Frances Westall, Stefan Bengtson and Juan Manuel Garcia-Ruiz are acknowledged for fruitful discussions. Financial support was provided to TH by the Swedish National Space Board and to SLC by the National Aeronautics and Space Administration under Grant Award No. NNG04GJ84G issued through the Exobiology Program.

8. References

Abramov, O. and Kring, D.A. (2004) Numerical modeling of an impact-induced hydrothermal system at the Sudbury crater. J. Geoph. Res. 109, E10007, doi:10.1029/2003JE002213.

Bottomley, R.J., York, D. and Grieve, R.A.F. (1978) 40Ar-39Ar ages of Scandinavian impact structures: L. Mien and Siljan. Contr. Min. Pet. 68, 79-84.

Cabrol, N.A. and Grin, E.A. (1999) Distribution, classification, and ages of martian impact crater lakes. Icarus 142, 160-172.

Cady, S.L. (2001) Formation and preservation of bona fide microfossils. In: Signs of Life. A report based on the April 2000 Workshop on Life Detection Techniques, Committee on the Origins and Evolution of Life, National Research Council, National Academies Press, Washington, DC, pp. 149-155.

Cady, S.L. and Farmer, J.D. (1996) Fossilization processes in siliceous thermal springs: Trends in preservation along thermal gradients. In: G.R. Bock and J.A. Goode (eds.) Evolution of Hydrothermal Ecosystems on Earth (and Mars?). Ciba Foundation Symposium 202, Wiley, Chichester, pp. 150-173.

Cady, S.L., Farmer, J.D., Grotzinger, J.P., Schopf, J.W. and Steele, A. (2003) Morphological biosignatures and the search for life on Mars. Astrobiology 3, 351-368.

Cockell, C.S. and Lee, P. (2002) The biology of impact craters - a review. Biol. Rev. 77, 279-310.

Farmer, J.D. (1996) Hydrothermal systems on Mars: An assessment of present evidence In: G.R. Bock and J.A. Goode (eds.) Evolution of Hydrothermal Ecosystems on Earth (and Mars?). Ciba Foundation Symposium 202, Wiley, Chichester, pp. 273-299.

Farmer, J.D. (1998) Thermophiles, early biosphere evolution, and the origin of life on Earth; implications for the exobiological exploration of Mars. J. Geoph. Res. 103E, 28457-28461.

Farmer, J. D. and Des Marais, D.J. (1993) Exopaleontology and the search for a fossil record on Mars. In: C.R. Stoker (ed.) In Case for Mars V., University of Colorado, Boulder, Colorado. pp. 33-34.

Garcia-Ruiz, J.M., Carnerup, A., Christy, A.G., Welham, N.J. and Hyde, S.T. (2002) Morphology: An ambiguous indicator of biogenicity. Astrobiology 2, 353-369.

Gault, D.E., Quaide, W.L. and Oberbeck, V.R. (1968) Impact cratering mechanics and structures. In: B.M. French and N.M. Short (eds.) Shock Metamorphism of Natural Materials. Mono Book, Baltimore, MD, pp. 87-99.

Grieve, R.A.F. (1987) Terrestrial impact structures. Ann. Rev. Earth Plan. Sci. 15, 245-270.

Grieve, R.A.F. (1988) The formation of large impact structures and constraints on the nature of Siljan. In: A. Boden and K.G. Eriksson (eds.) Deep Drilling in Crystalline Bedrock; Volume 1, The Deep Gas Drilling in the Siljan Impact Structure, Sweden and Astroblemes, Proceedings of the International Symposium. Springer, New York, pp. 328-348.

Grieve, R.A.F. and Therriault, A.M. (2004) Observations at terrestrial impact structures: Their utility in constraining crater formation. MAPS 39(2), 199-216.

Hjelmqvist, S. (1966) Beskrivning till berggrundskarta over Kopparbergs lan. Swedish Geological Survey, Ca 40, pp. 1-127.

Hode, T. (2005) In Search for Life on Mars - Preparation for Sample Return. Ph.D. thesis, Stockholm University, Sweden.

Hode, T., von Dalwigk, I. and Broman, C.A. (2003) Hydrothermal system associated with the Siljan impact structure, Sweden - Implications for the search for fossil life on Mars. Astrobiology 3, 271-289.

Holm, N.G. and Charlou, J.L. 2001. Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramatic hydrothermal system. Mid-Atlantic Ridge. Earth and planetary Science Letters, 191, 1-8.

Joeleht, A., Kirsimae, K., Plado, J., Versh, E. and Ivanov, B. (2005) Cooling of the Kardla impact crater: II. Impact and geothermal modeling. MAPS 40, 21-34.

Johansson, A. (1984) Geochemical studies on the Boda Pb-Zn deposit in the Siljan Astrobleme, central Sweden. GFF 106, 15-25.

Kirsimae, K., Suuroja, S., Kirs, J., Karki, A., Polikarpus, M., Puura, V. and Suuroja, K. (2002) Hornblende alteration and fluid inclusions in Kardla impact crater, Estonia: Evidence for impact-induced hydrothermal activity. MAPS 37, 449-457.

Komatsu, G. and Ori, G.G. (2000). Exobiological implications of potential sedimentary deposits on Mars. Plan. Spac. Sci. 48, 1043-1052.

Komor, S.C., Valley, J.W. and Philip, E. (1988a) Fluid-inclusion evidence for impact heating at the Siljan Ring, Sweden. Geology 16, 711-715.

Komor, S.C., Valley, J.W., Brown, P.E. and Collini, B. (1988b) Fluid Inclusions in Granite from the Siljan Ring Impact Structure and Surrounding Regions. In: A. Boden and K.G. Eriksson (eds.) Deep Drilling in Crystalline Bedrock; Volume 1, The Deep Gas Drilling in the Siljan Impact Structure, Sweden and Astroblemes, Proceedings of the International Symposium. Springer, New York, pp. 180-208.

Konhauser, K.O., Phoenix, V.R., Bottrell, S.H., Adams, D.G. and Head, I.M. (2001) Microbial-silica interactions in Icelandic hot spring sinter. Possible analogues for some Precambrian siliceous stromatolites. Sedimentology 48, 415-433.

Konhauser, K.O., Jones, B., Reysenbach, A.L. and Renaut, R.W. (2003) Hot springs sinters; keys to understanding Earth's earliest life forms, Can. J. Earth Sci. 40, 1713-1724.

Kresten, P. and Aaro, S. (1987) Bedrock Maps 13F Falun NV, 13F Falun NO, 13F Falun SV, and 13F Falun SO. Swedish Geological Survey, Serial No. Ai15-Ai18.

Kresten, P., Aaro, S. and Karis, L. (1991) Bedrock Maps 14F Rattvik NV, 14F Rattvik NO, 14F Rattvik SV, 14F Rattvik SO, 14E Mora NO, and 14E Mora SO. Swedish Geological Survey, Serial No. Ai46-Ai51.

Lindblom, S. and Wickman, F.E. (1985) Fluid inclusions in quartz from a quartz breccia in the Siljan Ring structure, central Sweden. GFF 107, 53-58.

Logan, G.A., Hinman, M.C., Walter, M.R. and Summons, R.E. (2001) Biogeochemistry of the 1640 Ma McArthur River (HYC) lead-zinc ore and host sediments, Northern Territory, Australia. Geoch. Cosmoch. Act. 65, 2317-2336.

Malmqvist, K.G., Hylten, G., Hult, M., Hakansson, K., Knox, J.M., Larsson, N.P.-O., Nilsson, C., Pallon, J., Swietlicki, E., Tapper, U.A.S. and Yang, C. (1993) Dedicated accelerator and microprobe line. NIM B 77, 3-7.

McCarville, P. and Crossey, L.J. (1996) Post-impact hydrothermal alteration of the Manson impact structure. In: C. Koeberl and R.R. Anderson (eds.) The Manson Impact Structure, Iowa: Anatomy of an Impact. Geol. Soc. Am. Special Paper 302, 347-376.

McKinley, J.P., Stevens, T.O. and Westall, F. (2000) Microfossils and paleoenvironments in deep subsurface basalt samples. Geomicrobiology J. 17, 43-54.

Melosh, H.J. (1989) Impact Cratering: A Geologic Process. Oxford University Press, New York.

Naumov, M.V. (2002) Impact-generated hydrothermal systems: Data from Popigai, Kara, and Puchezh-Katunki impact structures. In: J. Plado and L.J. Pesonen (eds.) Impacts in Precambrian Shields. Springer, New York, pp. 117-172.

Nealson, K.H. (1999) Post-Viking microbiology: New approaches, new data, new insights. Orig. Life Ev. Biosph. 29(1), 73-93.

Newsom, H.E., Graup, G., Sewards, T. and Keil, K. (1986) Fluidization and hydrothermal alteration of the suevite deposit at the Ries crater, West Germany, and implications for Mars. J. Geoph. Res. E91, 239-251.

Newsom, H.E., Hagerty, J.J. and Thorsos, I.E. (2001) Location and sampling of aqueous and hydrothermal deposits in martian impact craters. Astrobiology 1, 71-83.

Osinski, G.R., Spray, J.G. and Lee, P. (2001) Impact-induced hydrothermal activity within the Haughton impact structure, Arctic Canada: Generation of a transient, warm, wet oasis. MAPS 36, 731-745.

Rasmussen, B. (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676-679.

Reimold, W.U., Kelley, S.P., Sherlock, S.C., Henkel, H. and Koeberl, C. (2005) Laser argon dating of melt breccias from the Siljan impact structure, Sweden: Implications for a possible relationship to Late Devonian extinction events. MAPS 40, 591-607.

Renaut, R.W. and Jones, B. (2000) Microbial precipitates around continental hot springs. In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 187-195.

Renaut, R.W., Jones, B. and Tiercelin, J.J. (1998) Rapid in-situ silicification of microbes at Loburu hot springs, Lake Bogira, Kenya Rift Valley. Sedimentology 45, 1083-1103.

Schopf, J.W. and Klein, C. (eds.) (1992) The Proterozoic Biosphere. Cambridge University Press, Cambridge.

Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Czaja, A.D. and Wdowiak, T.J. (2005) Raman imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology 5(3), 333-371.

Schopf, J.W., Tripathi, A.B. and Kudryavtsev, A.B. (2006) Three-dimensional confocal optical imagery of Precambrian microscopic organisms. Astrobiology 6(1), 1-16.

Segura, T.L., Toon, O.B., Colaprete, A. and Zahnle, K. (2002) Environmental effects of large impacts on Mars. Science 298, 1977-1980.

Shoemaker, E.M. (1963) Impact mechanics at Meteor Crater, Arizona. In: B.M. Middlehurst and G.P. Kuiper (eds.) The Moon, Meteorites, and Comets. University of Chicago, Chicago, IL, pp. 301-336.

Simoneit, B.R.T., Summons, R.E. and Jahnke, L.L. (1998) Biomarkers as tracers for life on early Earth and Mars. Orig. Life Ev. Biosph. 28(4-6), 475-483.

Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., Bell III, J.F., Calvin, W., Christensen, P.R., Clark, B.C., Crisp, J.A., Farrand, W.H., Herkenhoff, K.E., Johnson, J.R., Klingelhöfer, G., Knoll, A.H., McLennan, S.M., McSween, H.Y., Jr., Morris, R.V., Rice, J.W., Jr., Rieder, R. and Soderblom L.A. (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306, 1709-1714.

Stetter, K.O. (1996) Hyperthermophiles in the history of life. In: G.R. Bock and J.A. Goode (eds.) Evolution of Hydrothermal Ecosystems on Earth (and Mars?). Ciba Foundation Symposium 202, Wiley, Chichester, pp. 1-23.

Stetter, K.O. (2006) Hyperthermophiles in the history of life. Phil. Trans. Roy Soc. 1474, 1837-1842. doi:10.1098/rstb.2006.1907.

Stevens, T.O. and McKinley, J.P. (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450-454.

Takai, K., Hirayama, H., Sakihama, Y., Inagaki, F., Yamato, Y. and Horikoshi, K. (2002) Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl. Environ. Microbiol. 68, 3046-3054.

Toon, O.W., Zahnle, K., Morrison, D., Turco, R.P. and Covey, C. (1997) Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geoph. 35, 41-78.

Valley, J.W., Komor, S.C., Baker, K., Jeffrey, A.W.A., Kaplan, I.R. and Raheim, A. (1988) Calcite crack cements in granite from the Siljan Ring, Sweden: Stable isotopic results. In: A. Boden and K.G. Eriksson (eds.) Deep Drilling in Crystalline Bedrock; Volume 1, The Deep Gas Drilling in the Siljan Impact Structure, Sweden and Astroblemes, Proceedings of the International Symposium. Springer, New York, pp. 156-179.

Versh, E., Kirsimae, K., Joeleht, A. and Plado, J. (2005) Cooling of the Kardla impact crater: I. The mineral paragenetic sequence observation. MAPS 40, 3-20.

Vlierboom, F.W., Collini, B. and Zumberge, J.E. (1986) The occurrence of petroleum in sedimentary rocks of the meteor impact crater at Lake Siljan, Sweden. Adv. Org. Geoch. 10, 153-161.

Walter, M. (1999) The Search for Life on Mars. Perseus, Cambridge, MA.

Walter, M.R. (1996) Ancient hydrothermal ecosystems on Earth: A new palaeobiological frontier. In: G.R. Bock and J.A. Goode (eds.) Evolution of Hydrothermal Ecosystems on Earth (and Mars?). Ciba Foundation Symposium 202, Wiley, Chichester, pp. 112-127.

Walter, M.R. and Des Marais, D.J. (1993) Preservation of biological information in thermal spring deposits: Developing a strategy for the search of a fossil record on Mars. Icarus 101, 129-143.

Westall, F. and Southam, G. (2006) The early record of life. In: K. Benn, J.-C. Mareschal and K. Condie (eds.) Archean Geodynamics and Environments. AGU Geophysical Monograph Series 164, Washington, DC, pp. 283-304.

Westall, F., Steele, A., Toporski, J., Walsh, M., Allen, C., Guidry, S., Gibson, E., Mckay, D. and Chafetz, H. (2000) Polymeric substances and biofilms as biomarkers in terrestrial materials; implications for extraterrestrial samples. J. Geoph. Res. E105, 24511-24527.

Westall, F., de Wit, M.J., Dann, J., van der Gaast, S., de Ronde, C.E.J. and Gerneke, D. (2001) Early Archean fossil bacteria and biofilms in hydrothermally influenced sediments from the Barberton greenstone belt, South Africa. Precamb. Res. 106, 93-116.

Westall, F., de Vries, S., Nijman, W., Rouchon, V., Orberger, B., Pearson,V., Watson, J., Verdosvsky, A., Wright, I., Rouzaud, J.N., Marchesini, D. and Severine, A. (2006) The 3.466 Ga "Kitty's Gap Chert," an early Archaean microbial ecosystem. In: W.U. Reimold and R.L. Gibson (eds.) Processes on the Early Earth. GSA Special Paper 405, Boulder, CO, pp. 105-132.

Biodata of Carrine E. Blank, author of "Phylogenomic Dating and the Relative Ancestry of Prokaryotic Metabolisms"

Dr. Carrine E. Blank is currently a research Assistant Professor of Molecular Geobiology at the University of Montana, Missoula. She obtained her Ph.D. from University of California, Berkeley in 2002. Her research interests are in the areas of microbial evolution and the co-evolution of early earth and early life.

E-mail: [email protected]

Carrine E. Blank

Was this article helpful?

0 0

Post a comment