Preservation In Thin Films Covering Rocks

The water history of Mars suggests that rock coatings, desert varnishes and weathering rinds should be present in any sedimentary deposit or embedded inside alteration materials derived from ancient and recent aqueous activity. Spirit MER has indeed provided direct evidences of rock coatings of unequivocal aqueous alteration (Haskin et al., 2005). In this sense, location and analysis of rock coatings of several ages can be essential to trace back the climatic and environmental history (Dorn and Dickinson, 1989; Liu and Broecker, 2000) of the planet since its origin. In fact, lamina accrection and substrate weathering currently work under seasonal climatic regimen that results from the periodic water availability and thermal conditions. Such information can obvioulsy be essential to determine the ancient to recent surface and subsurface environmental water patterns that took place on Mars. <-

Figure 4. (continued) Meridiani Mars area explored by the Opportunity (B) microbial remains embedded in a cryptocristalline matrix composed of SO4 and Fe3+-bearing mineralogies sampled n modern deposits of Río Tinto (Spain). (C) 2.1 million years goetithe layer showing preserved filaments inside having cryptocristalline habit (Río Tinto, Spain). (D) Organic association preserved in neutral and reducing underground areas of the Río Tinto system where hopanoids are present.

In desert varnishes thin aqueous films contacting the rock surfaces are currently oversaturated in ionic species such as silica, manganese or iron remobi-lized from the rocky substrate (Perry et al., 2006), which favors microbial activity (Kuhlman et al., 2006) and later preservation to organic traces when the conditions are favorable (Perry et al., 2006). In rock coatings and weathering rinds oversaturation under aggressive acidic or alkaline conditions is also favorable for inducing high mineralization rates to preserve from microbial structures to organics. As a result, a complex mixing of different mineralogies such as iron and manganese oxides, sulfates, carbonates, opaline silica and different phyllosilicates (Potter and Rossman, 1977) occurs as laminae enveloping weathered rocks.

Several environmental conditions besides aridity areas can be imprinted in the surface rinds. Some volcanic emissions centered in geothermal activity produce SO2-rich acidic fog which acts on volcanic tephra to induce the formation of silica and sulfate laminae (Schiffman et al., 2006). Ancient fluvial deposits are currently composed of conglomeratic materials which pebbles may show coatings depending on the climatic conditions that originated them. The Triassic Buntsandstein fluvial deposits in association to contemporaneous and older lacustrine and aeolian desert-like sedimentary materials, contain rounded pebbles that are covered by iron-rich coatings recording paleoclimatic information of great interest (Fig. 5A). The Río Tinto geological record dating back from Tertiary also shows iron rich coatings which origin is undoubtly associated to seasonal activity of acidic environments (Fig. 5B) and with clear traces of biological activity (Figs. 5C, D).

The importance of these microdeposits as recorders of modern and ancient biological activity, which can be easily detected in many planetary regions of Mars, cannot be overemphsized. As showed by Kuhlman et al. (2006), rock varnishes, as many other film coating environments, are microhabitats inhabited by diverse microbial communities having up to 108 microorganisms per gram of varnish lamina. Such a microbial activity can be traced through biochemical and organic compounds (Perry et al., 2006) that can be the base for the development of an exploration strategy for searching for life on Mars.

4. Conclusions: Mars Preservation Windows and Strategy for Planetary Exploration

Integrative research on preservation of biological information in terrestrial analogs is essential for building a consistent strategy to search for extinct life on Mars. From the scientific point of view, any exploration strategy developed for this compelling objective has to deal with the diverse Mars geological record which shows different preservation potential of biology depending on the paleoenvironment and diagenetic processes that have conformed it. As a result, different paleobiological entities may have potentially persisted and detection demands distinctive explorative procedures, sampling techniques and instrumentation (Farmer and Des Marais, 1999).

Figure 5. Iron-rich coatings on boulders (A) embedded in fluvial Iberian Permotriassic deposits (250 million of years), and (B) inside young Río Tinto terrace materials (1,000 years old). (C) SEM image showing microbial patches covering coated boulders and (D) EDAX microanalysis (spectrum 1 in (C) ) showing a carbon and iron enrichment as expected for microbial films associated to watery environments enriched in iron.

Figure 5. Iron-rich coatings on boulders (A) embedded in fluvial Iberian Permotriassic deposits (250 million of years), and (B) inside young Río Tinto terrace materials (1,000 years old). (C) SEM image showing microbial patches covering coated boulders and (D) EDAX microanalysis (spectrum 1 in (C) ) showing a carbon and iron enrichment as expected for microbial films associated to watery environments enriched in iron.

Therefore, the application of the preservation windows concept can be of great utility to define a specific explorative strategy based on the preservation potential of a given geological unit. The Río Tinto Mars analog can be claimed to illustrate shortly this assumption (Fernández-Remolar et al., 2008c). As mentioned above, whereas the Rio Tinto surface environment favors preservation of morphologies and organics in iron- and sulfate-rich materials, organics are only preserved in the reducing subsurface; however, preservation is reset to simple preservation of morphologies when all these materials are exposed to a 2-million-of-year diagenesis. Under these varying conditions, the detection of extinct life on Mars would require different methodologies going from optical to analytical instrumentation which application strongly drives the exploration strategy of a given area. Finally, the differential preservation observed in those surface and subsurface Río Tinto environments strongly support that automated drilling instrumentation will be essential to sample subsurface regions that can have recorded some traces of extinct life. Same underground areas protected against conditions that may have induce the destruction of biological information through oxidizing, acidic or any other extreme conditions.

5. Acknowledgements

We thank to Prof. Raymond Arvidson, Thomas Stein and Richard Schinteie for providing essential information and very illustrative images. We also appreciate to the suggestions kindly provided by Alix Davatzes and other refeer and editors who have highly improved the work. Special thanks to the USGS Astrogeological Program, NASA/JPL-Caltech, NASA/JPL/ASU and the THEMIS Public Data Releases which have provided the Mars surface images, as well as NASA/JPS/University of Arizona for the HiRiSE images. This paper was supported by the Project ESP2006-09487 funded by the Ministry of Science and Education of Spain.

6. References

Amils R., Gonzalez-Toril E., Fernandez-Remolar D., Gomez F., Aguilera A., Rodriguez N., Malki M., Garcia-Moyano A., Fairen A. G., de la Fuente V., and Luis Sanz J. (2007) Extreme environments as Mars terrestrial analogs: the Rio Tinto case. Planet. Space Sci. 55(3), 370-381.

Aubrey A., Cleaves H. J., Chalmers J. H., Skelley A. M., Mathies R. A., Grunthaner F. J., Ehrenfreund P., and Bada J. L. (2006) Sulfate minerals and organic compounds on Mars. Geology 34(5), 357-360.

Baker V. R. (2001) Water and the martian landscape. Nature 412, 228-236.

Bandfield J. L., Glotch T. D. and Christensen P. R. (2003) Spectroscopic identification of carbonate minerals in the martian dust. Science 301, 1084-1087.

Banfield J. F., Tyson G. W., Allen E. E., and Whitaker R. J. (2005) The search for a molecular-level understanding of the processes that underpin the Earth's biogeochemical cycles. In: J. L. Bandfield, J. Cervini-Silva, and K. H. Nealson (eds) Molecular geomicrobiology. Rev. Miner. Geochem. Mineralogical Society of America, Washington Vol. 59, pp. 1-7.

Benison K. C. (2006) A martian analog in Kansas: comparing martian strata with Permian acid saline lake deposits. Geology 34(5), 385-388.

Benison K. C. and LaClair D. A. (2003) Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments? Astrobiology 3(3), 609-618.

Bibring J.-P., Langevin Y., Mustard J. F., Poulet F., Arvidson R., Gendrin A., Gondet B., Mangold N., Pinet P., Forget F., the OMEGA team, Berthe M., Gomez C., Jouglet D., Soufflot A., Vincendon M., Combes M., Drossart P., Encrenaz T., Fouchet T., Merchiorri R., Belluci G., Altieri F., Formisano V., Capaccioni F., Cerroni P., Coradini A., Fonti S., Korablev O., Kottsov V., Ignatiev N., Moroz V., Titov D., Zasova L., Loiseau D., Pinet P., Doute S., Schmitt B., Sotin C., Hauber E., Hoffmann H., Jaumann R., Keller U., Arvidson R., Duxbury T., Forget F., and Neukum G. (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express Data. Science 312(5772), 400-404.

Blowes D. W., Ptacek C. J., Jambor J. L., and Weisener C. G. (2005) The geochemistry of acid mine drainage. In: Environmental geochemistry B. S. Lollar (ed.) Treatise on geochemistry H. D. Holland and K. K. Turekian (eds.), Vol. 9. Elsevier, Oxford, pp. 149-204.

Brake S. S., Hasiotis S. T., Dannelly H. K., and Connors K. A. (2002) Eukaryotic stromatolite builders in acid mine drainage: implications for Precambrian iron formations and oxygenation of the atmosphere? Geology Amsterdam 30(7), 599-602.

Brasier M. D. (1992) Paleoceanography and changes in the biological cycling of phosphorous across the Precambrian-Cambrian Boundary. In: J. H. Lipps and P. W. Signor (eds.) Origin and evolution of the Metazoa. Plenum, New York, pp. 483-523.

Bridges J. C., Catling D. C., Saxton J. M., Swindle T. D., Lyon I. C., and Grady M. M. (2001) Alteration assemblages in martian meteorites: implications for near-surface processes. Space Sci. Rev. 96, 365-392.

Brocks J. J. and Summons R. E. (2005) Sedimentary hydrocarbons, biomarkers for Early Life. In: W. H. Schlesinger (ed.) Biogeochemistry. Vol. 8. Elsevier. Amsterdam pp. 63-115.

Cabrol N. A. and Grin E. A. (2001) The evolution of lacustrine environments on Mars: is Mars only hydrologically dormant?. Icarus 149, 291-328.

Carr M. (2006) The surface of Mars. Cambridge University Press, Cambridge, 307 p.

Conway Morris S. (1990) Taphonomy of fossil-lagerstâtten: Burguess Shale. In: D. E. G. Briggs and P. R. Crowther (eds.) Palaeobiology: a synthesis. Blackwell Science, Oxford, pp. 270-274.

Corcoran P. L. and Mueller W. U. (2004) Aggressive Archaean weathering. In: P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, and O. Catuneanu (eds.) The Precambriam Earth: tempos and events. Elsevier, Amsterdam pp. 494-504.

Davis R. A., Welty A. T., Borrego J., Morales J. A., Pendon J. G., and Ryan J. G. (2000) Rio Tinto estuary (Spain): 5000 years of pollution. Env. Geol. 39(10), 1107-1116.

Dorn R. I. and Dickinson W. R. (1989) First paleonvironmental interpretation of a pre-Quaternary rock varnish site, Davidson Canyon, southern Arizona. Geology 17, 1029-1031.

Eglinton G. and Logan G. A. (1991) Molecular preservation. Phil. Trans. Roy. Soc. London, Series B, Biol. Scien., 333(1268), 315-328.

Farmer J. and Des Marais D. J. (1999) Exploring for a record of ancient martian life. J. Geophys. Res. 104(E11), 26977-26995.

Fasset C. I. and Head III J. W. (2005) Fluvial sedimentary deposits on Mars: ancient deltas in a crater lake in the Nilli Fossae region. Geophys. Res. Let. 32, doi: 10.1029/2005GL023456.

Fedo C. M. (2000) Setting and origin for problematic rocks from the >3.7 Ga Isua Greenstone Belt, southern west Greenland: Earth's oldest coarse clastic sediments. Precambrian Res. 101(1), 69-78.

Fernández-López S. (1991) Taphonomic concepts for a theoretical biochronology. Rev. Esp. Paleont. 6(1), 37-49.

Fernández-López S. (1995) Taphnomie et interprétation des paléoenvironnements. Geobios 18, 137-154.

Fernández-López S. (2007) Ammonoid taphonomy, palaeoenvironments and sequence stratigraphy at the Bajocian/Bathonian boundary on the Bas Auran area (Subalpine Basin, south-eastern France). Lethaia 40, 377-391.

Fernández-Remolar D. C. and Knoll A. H. (2008) Fossilization potential of iron-bearing minerals in acidic environments of Rio Tinto, Spain: implications for Mars exploration. Icarus 194, 72-95.

Fernández-Remolar D. C., Morris R. V., Gruener J. E., Amils R., and Knoll A. H. (2005) The Río Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 149-167.

Fernández-Remolar D. C , Menor Salván C., Ruíz Bermejo M., and Knoll A. H. (2007) The fate of biological materials in acidic environments of the Rio Tinto, southwestern Spain. In: J. Seckbach (ed.) Algae and cyanobacteria in extreme environments. COLE Series. Vol. 11. Springer, Dordrecht pp. 697-710.

Fernández Remolar D. C., Gómez F., Prieto-Ballesteros O., Schelble R. T., Rodríguez N., and Amils R. (2008a) Some ecological mechanisms to generate habitability in planetary subsurface areas by chemolithotrophic communities: the Río Tinto subsurface ecosystem as a model system. Astrobiology 8(1), 157-173.

Fernández-Remolar D. C., Prieto-Ballesteros O., Rodríguez N., Gómez F., Amils R., Gómez-Elvira J., and Stoker C. (2008b) Underground habitats found in the Río Tinto Basin: an approach to Mars subsurface life exploration. Astrobiology 8, in press.

Fernández-Remolar D. C., Menor-Salván C., and Ruíz-Bermejo M. (2008c) Differential preservation of biological information under the global acidic conditions of Mars, an approach from the Río Tinto Mars analog and its implications for searching extinct on Mars. 39 Lunar and Planetery Science Conference, paper 1890.

Franck S., Kossacki K., and Bounama C. (1999) Modelling the global carbon cycle for the past and future evolution of the earth system. Chem. Geol. 159(1-4), 305-317.

Francois L. M. and Walker J. C. G. (1992) Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic of sea water. Am. J. Sci. 292, 81-135.

Giorgetti G. and Baroni C. (2007) High-resolution analysis of silica and sulphate-rich rock varnishes from Victoria Land (Antarctica). Eur. J. Mineral. 19(3), 381-389.

Golubic S. and Schneider J. (2003) Microbial endoliths as internal biofilms. In: W. E. Krumbein, D. M. Paterson, and G. A. Zavarzin (eds.) Fossils and recent biofilms: a natural history of Life on Earth. Kluwer, Dordrecht pp. 249-263.

Gómez F., Fernández-Remolar D., González-Toril E. F., and Amils R. (2004) The Tinto River, an extreme Gaian environment. In: L. Margulis, J. Miller, P. Boston, S. Schneider, and E. Crist (eds.) Scientist on Gaia 2000. MIT Press, Cambridge (USA) pp. 321-334.

Grady M. M. and Wright I. (2006) The carbon cycle on early Earth and on Mars? Phil. Trans. Roy. Soc. B 361, 1703-1713.

Grant J. A., Irwin R. P., Grotzinger J. P., Milliken R. E., Tornabene L. L., McEwen A. S., Weitz C. M., Squyres S. W., Glotch T. D., Thomson B. J., and HiRISE Team (2007) Impact and Aqueous Stratigraphy in Holden Crater as Revealed by HiRISE. Seventh International Conference Mars, paper 3229.

Grasby S. E., Allen C. C., Longazo T. G., Lisle J. T., Griffin D. W., and Beauchamp B. (2003) Supraglacial sulfur springs and associated biological activity in the Canadian High Arctic-signs of life beneath the ice. Astrobiology 3(3), 583-596.

Grotzinger J. P. (1994) Trends in Precambrian carbonate sediments and their implication to understanding evolution. In: S. Bengtson (ed.) Early Life on Earth, Nobel Symposium. Vol. 84. Columbia University Press, New York pp. 245-258.

Grotzinger J. P., Arvidson R. E., Bell III J. F., Calvin W., Clark B. C., Fike D. A., Golombek M., Greeley R., Haldemann A., and Herkenhoff K. E. (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240(1), 11-72.

Hamade T., Konhauser K. O., Raiswell R., Goldsmith S., and Morris R. C. (2003) Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations. Geology 31(1), 35-38.

Haskin L. A., Wang A., Jolliff B. L., McSween H. Y., Clark B. C., Des Marais D. J., McLennan S. M., Tosca N. J., Hurowitz J. A., Farmer J. D., Yen A., Squyres S. W., Arvidson R. E., Klingelhofer G., Schroder C., de Souza P. A., Ming D. W., Gellert R., Zipfel J., Bruckner J., Bell J. F., Herkenhoff K., Christensen P. R., Ruff S., Blaney D., Gorevan S., Cabrol N. A., Crumpler L., Grant J., and Soderblom L. (2005) Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature 436(7047), 66-69.

Hessler A. M. and Lowe D. R. (2006) Weathering and sediment generation in the Archean: an integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Res. 151(3-4), 185-210.

Jones B., Renaut R. W., and Rosen M. R. (2001) Taphonomy of silicified filamentous microbes in modern geothermal sinters - Implications for identification. PALAIOS 16(6), 580-592.

Kazue T. (1999) Architecture of biomats reveals history of geo-, aqua-, and bio-systems. Episodes 22(1), 21-25.

Kiyokawa S., Ito T., Ikehara M., and Kitajima F. (2006) Middle Archean volcano-hydrothermal sequence: bacterial microfossil-bearing 3.2 Ga Dixo Island Formation, coastal Pilabara terrane, Australia. GSA Bull. 118(1/2), 3-22.

Kuhlman K. R., Fusco W. G., La Duc M. T., Allenbach L. B., Ball C. L., Kuhlman G. M., Anderson R. C., Erickson I. K., Stuecker T., Benardini J., Strap J. L., and Crawford R. L. (2006) Diversity of Microorganisms within Rock Varnish in the Whipple Mountains, California. App. Env. Microbiol. 72(2), 1708-1715.

Kuhlman K. R. and McKay C. P. (2007) Occurrence of rock varnish at Yungay, Atacama desert, Chile. 38 Lunar and Planetery Science Conference, paper 2251.

Leistel J. M., Marcoux E., Thiéblemont D., Quesada C., Sánchez A., Almodóvar G. R., Pascual E., and Sáez R. (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner Dep. 33(2), 2-30.

Lewis A. J., Palmer M. R., Sturchio N. C., and Kemp A. J. (1997) The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochim. Cosmochim. Acta 61(4), 695-706.

Liu T. and Broecker W. S. (2000) How fast does rock varnish grow? Geology 28(2), 183-186.

Logan G., Boon J., and Eglinton G. (1993) Structural Biopolymer Preservation in Miocene Leaf

Fossils from the Clarkia Site, Northern Idaho. Proc. Nat. Acad. Sci. 90(6), 2246-2250. Malin M. C. and Edgett K. S. (2000) Sedimentary rocks of Early Mars. Science 290(5498), 1927-1937. Michalski J. R. and Noe Dobrea E. Z. (2007) Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars. Geology 35, 951-954. Moore J. M. and Clague D. A. (2004) Hawaiian submarine manganese-iron oxide crusts - A dating tool? GSA Bull. 116(3/4), 337-347. Moreno C., Capitán M. A., Doyle M., Nieto J. M., Ruiz F., and Sáez R. (2003) Edad mínima del gossan de Las Cruces: implicaciones sobre la edad de inicio de los ecosistemas extremos en la Faja Pirítica Ibérica. Geogaceta 33, 75-78. Morris R. V., Klingelhofer G., Bernhardt B., Schroder C., Rodionov D. S., de Souza P. A., Jr., Yen A., Gellert R., Evlanov E. N., Foh J., Kankeleit E., Gutlich P., Ming D. W., Renz F., Wdowiak T., Squyres S. W., and Arvidson R. E. (2004) Mineralogy at Gusev Crater from the Mossbauer Spectrometer on the Spirit Rover. Science 305(5685), 833-836. Noffke N., Eriksson K. A., Hazen R. M., and Simpson E. L. (2006) A new window into Early Archean life: microbial mats in Earth's oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34(4), 253-256. Ohmoto H. (2004) The Archaean atmosphere, hydrosphere and biosphere. In: P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, and O. Catuneanu (eds.) The Precambrian Earth: tempos and events. Elsevier, Amsterdam, pp. 361-388. Orr J. C., Fabry V. J., Aumont O., Bopp L., Doney S. C., Feely R. A., Gnanadesikan A., Gruber N., Ishida A., Joos F., Key R. M., Lindsay K., Maier-Reimer E., Matear R., Monfray P., Mouchet

A., Najjar R. G., Plattner G.-K., Rodgers K. B., Sabine C. L., Sarmiento J. L., Schlitzer R., Slater R. D., Totterdell I. J., Weirig M.-F., Yamanaka Y., and Yool A. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059), 681-686.

Perry R. S., Lynne B. Y., Sephton M. A., Kolb V. M., Perry C. C., and Staley J. T. (2006) Baking black opal in the desert sun: the importance of silica in desert varnish. Geology 34(7), 537-540. Potter R. M. and Rossman G. R. (1977) Desert varnish: the importance of clay minerals. Science 196(4297), 1446-1448.

Poulet F., Bibring J.-P., Mustard J. F., Gendrin A., Mangold N., Langevin Y., Arvidson R. E., Gondet

B., and Gomez C. (2005) Phyllosilicates on Mars and implications for early martian climate. Nature 438(7068), 623-627.

Rosing M. T., Rose N. M., Bridgwater D., and Thomsen H. S. (1996) Earliest part of earth's strati-graphic record: a reappraisal of the >3.7 Ga Isua (Greenland) supracrustal sequence. Geology 24(1), 43-46.

Schiffman P., Zierenberg R. A., Marks N., Bishop J. L., and Dyar M. D. (2006) Acid-fog deposition at Kilauea volcano: a possible mechanism for the formation of siliceous-sulfate rock coatings on Mars. Geology 34(11), 921-924. Schinteie R., Campbell K. A., and Browne P. R. L. (2007) Microfacies of stromatolitic sinter fromk acid-sulphate-chloride springs at Parakiri Stream, Rotokawa Geothermal Field, New Zealand. Palaeont. Electron. 10(1), 4A, 33. Schulze-Makuch D., Dohm J. M., Fan C., Fairen A. G., Rodriguez J. A. P., Baker V. R., and Fink W.

(2007) Exploration of hydrothermal targets on Mars. Icarus 189(2), 308-324. Seilacher A. (1990) Taphonomy of Fossil lagerstatten: Overview. In: D. E. G. Briggs and P. R.

Crowther (eds.) Palaeobiology: a synthesys. Blackwell Science, Oxford pp. 266-270. Sinninghe Damsté J. S. and De Leeuw J. W. (1990) Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Org. Geochem. 16(4-6), 1077-1101. Squyres S. W., Grotzinger J. P., Arvidson R. E., Bell J. F., III, Calvin W., Christensen P. R., Clark B.

C., Crisp J. A., Farrand W. H., Herkenhoff K. E., Johnson J. R., Klingelhofer G., Knoll A. H., McLennan S. M., McSween H. Y., Jr., Morris R. V., Rice J. W., Jr., Rieder R., and Soderblom

L. A. (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306(5702), 1709-1714.

Varnes E. S., Jakosky B. M., and McCollom T. M. (2003) Biological potential of martian hydrothermal systems. Astrobiology 3(2), 407-414.

Walker J. J., Spear J. R., and Pace N. R. (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434(7036), 1011-1014.

Walsh M. M. and Westall F. (2003) Archean biofilms preserved in the Swaziland supergroup, South Africa. In: W. E. Krumbein, D. M. Paterson, and G. A. Zarvarzin (eds.) Fossil and recent biofilms: a natural history of Life on Earth. Kluwer, Dordrecht pp. 307-316.

SUMMARY, FINAL COMMENTS AND CONCLUSIONS

JOSEPH SECKBACH1, JULIAN CHELA-FLORES2, AHARON OREN3 AND FRANCOIS RAULIN4

1P.O. Box 1132, Efrat 90435, Israel 2The Abdus Salam ICTP, Strada Costiera 11, 34014 Trieste, Italia and Instituto De Estudios Avanzados, Idea, Caracas 1015A, República Bolivariana de Venezuela

3Department of Plant and Environmental Sciences, The Institute of Life Sciences, and the Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

4Lisa Umr Cnrs 7583 Universités Paris 12 & Paris 7, 61 Avenue du General de Gaulle F 94010 Creteil Cedex, France

This volume describes and discusses the oldest, extinct microorganisms from the depth of Earth and possible microbes from the upper spheres above Earth. Even though spacecraft or space Lander vehicles have yet to detect life traces outside of Earth, it is well possible that a record of past life or even currently living forms will be found on the surface or in subsurface areas of some extraterrestrial places.

"Fossil" according the Encyclopedia Britannica means a remnant, impression, or trace of an animal or plant of a past geologic age that has been preserved in the Earth's crust. Fossils are thus mineralized or preserved remains or traces of various organisms, such as microorganisms, plants and animals. Paleontology investigates fossils across geological periods, their formation, and the evolutionary relationships between taxa. When searching for fossil remains, one finds remnants ranging from microscopic single cells (often in large masses forming structures such as stromatolites), plants including petrified wood, and animals: mammals, fish, snakes, turtles, birds, up to gigantic animals such as elephants, mammoths or dinosaurs. Fossils are found ubiquitously in land and marine environments. The common presence of fossilized sea creatures high up in the mountainsides was considered by some people as a proof of the Great Flood described in the Bible or similar stories that appear in folklore worldwide. Fossil fuel is also consists of a class of ancient biological material occurring within the crust of the earth. Usually fossils mainly consist of portions of organisms that were already partially mineralized during life, such as the bones and teeth of vertebrates. Such compounds can be used as biomarkers to specifically detect certain groups of organisms. The age of the rock strata which contain fossils can be determined by radiometric dating method. Some fossil specimens can be estimated to have originated billions of years ago.

0 0

Post a comment