The Big Bang At Time Zero

PETER R. BAHN1 AND STEVEN H. PRAVDO2

'Bahn Biotechnology Co., 10415 E. Boyd Rd., Mt. Vernon, IL 62864, USA

2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91106, USA

Abstract The cosmic background radiation left over from the Big Bang approximately 14 billion years ago is the oldest of all fossils. The Big Bang at time zero is the most important of all boundary conditions for the very possibility of life in the Universe. In the Big Bang singularity, space and time do not exist, so causality cannot be operative. This leads us to conclude that the Big Bang was an uncaused event.

1. Introduction

On October 3, 2006, for the second time only, a Nobel prize in physics was awarded for experimental observational work in cosmology, to John Mather and George Smoot, for detailed study of the relic cosmic background radiation left over from approximately 400,000 years after the Big Bang (Kaku, 2006), which was the beginning of time itself. The first time that a Nobel prize in physics was awarded for experimental observational work in cosmology, was in 1978, to Arno Penzias and Robert Wilson, for their detection in 1965 that a relic cosmic background radiation left over from the Big Bang actually existed in the first place (Penzias and Wilson, 1965). That such a cosmic background radiation would be left over from a Big Bang was, in fact, predicted by the physicists George Gamow, Ralph Alpher, and Robert Herman in 1948 (Gamow, 1952).

It was not always clear that there was a Time Zero, or a beginning of time. For example, in the 1940s, the 1950s, and the 1960s, when two different theories of the Universe, the Big Bang Theory (Weinberg, 1994) and the Steady State Theory (Hoyle, 1975), were in competition, the first theory stating that the Universe had a beginning time billions of years ago and the second theory stating that the Universe was eternal and had no beginning time, it was not clear at all that either theory could be proved. Scientists worried about how one would prove that the Universe and time itself began with a certain event billions of years ago. However, with the discovery of the cosmic background radiation by Penzias and Wilson (Singh, 2005), this problem was solved, and it was convincingly demonstrated that the Universe did indeed begin in a huge explosion of matter, energy, space, and time approximately 14 billion years ago. The enduring characteristics of the Big Bang that encompass the properties of space-time and the laws of electromagnetism and gravity remain unchanged from then until now. What this example points out is that the laws of science, at least the laws of physics and chemistry, do not change even over billions of years of time and over billions of parsecs of space.

The cosmic background radiation can be viewed even today as the static 'snow' seen occasionally on television screens and can be heard on radios as the static noise accompanying and between stations. The cosmic background radiation left over from the Big Bang is the oldest of all fossils.

2. From the Big Bang to Astrobiology

The Big Bang at time zero is the most important of all boundary conditions for the very possibility of astrobiology in the Universe. Apparently, at time zero, from a singularity of infinite temperature and density, the Universe was born from an explosion of matter, energy, space, and time (Hawking, 1988, 2001, 2002; Weinberg, 1994). This event occurred roughly 13.7 billion years ago. About a hundredth of a second after time zero, the Universe cooled to a temperature of a hundred trillion degrees Kelvin. About a hundred seconds after time zero, the Universe cooled down further to a temperature of one trillion degrees (Adams, 2002).

When the Universe was about 400,000 years old and its temperature had further cooled down to three thousand degrees, protons, neutrons, and electrons combined for the first time to produce the first atoms of hydrogen and helium only. Hundreds of millions of years later, when the first stars formed, atoms of heavier elements were formed by fusions of hydrogen and helium in the interiors of such stars where temperatures averaged about ten million degrees. The heavier elements were spit back out into the cosmos via cosmic rays and mass ejecta from supernova explosions of such stars after they had burned up all of their nuclear fuel (Hartquist and Williams, 1995).

The heavier elements in the cosmos proceeded to form primitive inorganic compounds in the following manner: Carbon reacted with hydrogen to produce methane. Nitrogen reacted with hydrogen to produce ammonia. Hydrogen and oxygen reacted to produce water. Carbon and oxygen reacted to produce carbon dioxide. Phosphorous and oxygen reacted to produce phosphate. Sulfur and hydrogen reacted to produce hydrogen sulfide. Carbon, oxygen, and hydrogen reacted to produce formaldehyde. Other simple primitive inorganic compounds were formed in similar chemical reactions.

About four billion years ago, at least here on the planet Earth, the above types of primitive inorganic compounds, continued to undergo chemical reactions to form amino acids, nucleobases, sugars, and lipids. Between four billion years ago and a few hundred million years later, on the primitive Earth, amino acids, nucleobases, sugars, phosphates, and lipids underwent further chemical evolution (Calvin, 1969) to form the first proteins, nucleic acids, polysaccharides, and complex lipids, which subsequently organized themselves into entities called cells which possessed the emergent property of assemblies of molecules that we call being alive (Morowitz, 1992) and that were capable of further undergoing biological evolution (Oparin, 1938; Seckbach, 2004). The rest of the story is biological history (Darwin, 1859). It would be very strange indeed if there were not life forms spread throughout the Universe. After all, we Earth based life forms inhabit just one rock orbiting around an average yellow star a quarter of the way in from the rim of a typical spiral galaxy in a local cluster, surrounded by billions of other galaxies, and billions and billions of other planets. Among all of the billions of galaxies in the Universe, there undoubtedly are other life forms. However, sentient life forms may be rare in the Universe (Ward and Brownlee, 2000).

3. From Special Relativity to General Relativity

The Newtonian Universe, which held sway in the minds of scientists for three centuries, was perfectly Euclidean and infinite in extent. Within this sensorium, space was perfectly uniform with no space being different from any other space, and time also was perfectly uniform, with time differing not at all from one location in the Universe to any other place in the universe. The Newtonian Universe looked very much like a Universe which could have been eternal and essentially changeless over a large scale, a Universe with no beginning and no end.

However, when James Clerk Maxwell completed the main development of classical electrodynamics with his famous four equations describing static and changing electric and magnetic fields, and it was found that exactly one speed for the electromagnetic radiation that we call light fell out of these equations, an impasse in the fitting together of classical electromagnetics with classical mechanics began to be noticed. The impasse was this: Maxwell's equations predicted a single precise speed of light independently of the state of motion of the inertial reference frame in which the measurement of the speed of light might be taken. This fact was in distinct contradiction to Newtonian mechanics where the speeds of material objects depended very much on the state of motion of the inertial reference frame in which the measurement of the speed of such material objects might be taken.

This vexing conundrum in physics was successfully resolved in the year 1905 by Albert Einstein who convincingly demonstrated that the electrodynamics of bodies moving with constant velocities are correctly described by his Special Theory of Relativity (Einstein, 1905). The main results of this theory are as follows: Space and time are not uniform everywhere and everywhen as in the Newtonian Universe. In fact, space shrinks in the direction of forward motion, such space shrinking to zero as an object's motion approaches the speed of light. Also, time slows down for objects in motion, such time slowing to a complete stop as an object's motion approaches the speed of light. In addition, the mass of a material object increases with the material object's motion, such mass increasing to infinite mass as the material object's motion approaches the speed of light.

The most famous equation associated with Einstein's Special Theory of Relativity is the formula E = mc2 or energy equals mass times the speed of light squared. The reality of this equation was brilliantly illuminated by J. Robert Oppenheimer and his colleagues at Alamogordo, New Mexico in the year 1945 by the explosion of the first fission uranium-based atomic bomb.

The reason that the Special Theory of Relativity is called special is that it pertains to the electrodynamics of objects traveling at a constant velocity, as an object would travel through empty space devoid of gravitational fields. Thus, the Special Theory of Relativity is a theory of space and time especially simplified, and hence the word "Special".

Albert Einstein, who in large part overthrew the Newtonian Universe which had lasted for 300 years, then went on to reconstruct the Universe anew in his General Theory of Relativity where there are gravitational fields and where the velocities of material objects are not constant but rather where the velocities of material objects are subject to accelerations and deaccelerations. Thus it became clear that whereas the Special Theory of Relativity was a theory of space, time, and motion, the General Theory of Relativity was going to be a theory of space, time, motion, and gravitation (Einstein, 1916).

Einstein started out by noting that it was impossible for an observer inside a rocket ship without windows to tell whether the ship was stationary in a gravitational field or was accelerating through open space without a gravitational field. This realization Einstein called the Principle of Equivalence because it pointed out the fundamental equivalence of the inertial and gravitational mass of matter, which equivalence had been known but previously never really understood before Einstein's happy thought experiment.

Einstein then realized that a mass in free fall in a gravitational field did not actually experience a gravitational force if the inertial reference frame was taken to be centered on the mass itself during its free fall in the gravitational field. Thus, gravitation (Misner et al., 1973), instead of being looked upon as a force, could more accurately be seen as a bending or curvature of space-time around the source of a gravitational field. As the renowned physicist John Wheeler put it, "Matter tells space how to curve and space tells matter how to move."

The main results of the General Theory of Relativity, which was published in 1916, are these: Space and time (or, to be more accurate, space-time) is a property of the distribution of matter-energy. In fact, the space and time of the Universe is a property of the distribution of matter-energy in the Universe. As the curvature of space, that is, the gravitational field increases, time slows down. At an infinite curvature of space, as found at the Big Bang singularity or as found in present-day black holes of galactic, stellar, or even smaller sizes (Novikov, 1995), time comes to a complete stop. In other words, in the Big Bang singularity and in a black hole singularity time does not exist.

4. From Classical Mechanics to Quantum Mechanics

In the Newtonian Universe, the distribution of matter in a material object and the distribution of energy in a physical system can vary in a continuous manner, smoothly increasing or decreasing from zero matter and energy to the highest level of matter and energy in the particular system under study (Marion, 1965). However, in the quantum mechanical revolution of the first quarter of the twentieth century it was found that matter came in discrete bits called atoms or particles and that energy also came in discrete bits called quanta.

The quantum mechanical revolution began when Max Planck studied the spectrum of black body radiation and found that he had to invent a new physical constant h as a parameter of the size of energy quanta to obtain a match between black body theory and black body experimental results. Then Albert Einstein showed that light waves are actually composed of discrete bits of energy called photons and where the energy of a photon was given by the equation E = hv where E is the energy, h is Planck's constant, and v is the frequency of the photon. Consequently it was shown that not only do waves of light have particle-like properties but also that particles of matter such electrons also have wavelike properties. This quantum mechanical wave-particle duality at first seemed quite strange indeed but physicists by now have gotten used to it.

The next step in quantum mechanics came with the discovery of Werner Heisenberg that for any particle whatsoever, the exact position and the exact momentum of a particle could never be precisely determined at the same time. The absolutely unavoidable uncertainty of the state of the particle was described by the equation h < Ap Ax where h is Planck's constant, Ap is the uncertainty in the particle's momentum, and Ax is the uncertainty in the particle's position.

The next step in the evolution of quantum mechanics was taken when Erwin Schrodinger discovered the equation which correctly describes the wave function y associated with a particle.

Finally, the last step in the quantum mechanical revolution was taken by Max Born who correctly interpreted the wave function y by saying the absolute value of y squared was a function describing the probability distribution of finding the said particle at a particular location in space.

The thing about quantum mechanics that physicists found initially to be a shock was that quantum mechanics showed that there was a certain amount of indeterminism unavoidably built in to the world. In other words, there was a certain amount of acausality built in to reality. For example, it was subsequently shown that in all physical systems, there were always random quantum fluctuations occurring to a certain degree. Even in a perfect vacuum, so-called virtual particles are constantly flickering into and out of existence. This had been demonstrated experimentally in what is known as the Casimir Effect. Vacuum quantum fluctuations are possible as long as they do not violate an alternative form of the Heisenberg Uncertainty Principle.

5. The Planck Length and the Planck Time

Although classical physics has been superceded by the more inclusive theories of general relativity and quantum mechanics, and although these two theories of modern physics have passed every experimental and observational test to which they have been subjected, still there is currently no common consensus among physicists of how to combine the two theories, both of which must form some part of an ultimate theory of the Universe as we approach closer and closer to time zero of the Big Bang. In any case, it is generally agreed by an overwhelming consensus of physicists that as we approach a size dimension called the Planck length defined as lP = 10-35 m (Peacock, 1999), the theories of general relativity and quantum mechanics begin to break down. Also, as we approach a time dimension after time zero called the Planck time defined as tP = 10-43 seconds (Peacock, 1999), the theories of general relativity and quantum mechanics again begin to break down. To get closer to understanding the initial Big Bang singularity at a time earlier than 10-43 seconds after time zero, when the Big Bang was only 10-35 m in diameter, in the absence of a unified theory of general relativity and quantum mechanics, we have to project what those theories imply by extrapolation to time zero and to diameter zero of the said Big Bang singularity. Those theories imply that at the Big Bang Singularity, space and time come to a complete stop. That is, space and time themselves originated only at the moment of the Big Bang explosion. There was no space and there was no time before the Big Bang explosion. Even the word "before" loses all meaning in this context. How can there be a "before" when time does not exist? Clearly there cannot be a "before" to the Big Bang at time zero. Neither can there be any "place" before the Big Bang at time zero for a place implies a location in space, but there was no space before the Big Bang at time zero.

6. Space, Time, and Causality

As the great eighteenth century philosopher Immanuel Kant (1781) pointed out in his classic book Critique of Pure Reason, space and time are modes of apperception without which we are hard pressed to conceptualize anything whatsoever. Also, all mechanisms by which we understand how anything in the Universe works, namely causality, also take place only within the ground works of space and time. Even to the extent that quantum mechanics has displayed a fundamental acausality or indeterminism in the course of events that take place in the Universe, particularly at a micro level, even such quantum mechanical acausality or indeterminism takes place within space and time. Even a vacuum requires space, and quantum mechanical vacuum fluctuations thus take place in space and time. Even a so-called false vacuum requires space. A Higgs field, or for that matter (pardon the pun), any field whatsoever requires space.

7. The Big Bang at Time Zero

So, what can we say about the very first of all possible states - the Big Bang at time zero? If we wish to be scientific, we have to admit that at time zero of the Big Bang, no space and no time existed. There was no "before" to this initial state. "Before" is something which only takes place in time. When time does not exist, an instant and eternity have no meaning. When time does not exist, causality also cannot be operating because causality itself has no meaning. For the above reasons, about the Big Bang at time zero, we conclude the following: The Big Bang was an uncaused event.

8. Acknowledgment

The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

9. References

Adams, F. (2002) Origins of Existence, Free Press, New York.

Calvin, M. (1969) Chemical Evolution: Molecular Evolution of Living Systems on the Earth and

Elsewhere, Oxford University Press, Oxford. Darwin, C. (1859) The Origin of Species, Avenel Books/Crown Publishers, New York. Einstein, A. (1905) Zur elektrodynamik bewegter Körper, Ann. Phys. (Germany) 17, 891-921. Einstein, A. (1916) Näherungsweise Integration der Feldgleichungen der Gravitation, Preuss. Akad.

Wiss. Berlin. Sitzber, 688-696. Gamow, G. (1952) The Creation of the Universe, Dover, Mineola, New York.

Hartquist, T.W. and Williams, D.A. (1995) The Chemically Controlled Cosmos: Astronomical

Molecules from the Big Bang to Exploding Stars, Cambridge University Press, Cambridge. Hawking, S. (2001) The Universe in a Nutshell, Bantam Books, New York.

Hawking, S.W. (1988) A Brief History of Time: From the Big Bang to Black Holes, Bantam Books, New York.

Hawking, S.W. (2002) The Theory of Everything, New Millennium Press, Beverly Hills, CA. Hoyle, F. (1975) Astronomy and Cosmology: A Modern Course, W.H. Freeman, San Francisco, CA. Kaku, M. (2006) Echo of Genesis, The Wall Street Journal, October 4, 2006, A14. Kant, I. (1781) Critique of Pure Reason.

Marion, J.B. (1965) Classical Dynamics of Particles and System, Academic, New York.

Misner, C.W., Thorne, K., and Wheeler, J.A. (1973) Gravitation, W.H. Freeman, San Francisco, CA.

Morowitz, H.J. (1992) Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis, Yale

University Press, New Haven, CT. Novikov, I. (1995) Black Holes and the Universe, Cambridge University Press, Cambridge. Oparin, A.I. (1938) Origin of Life, Macmillan, London.

Peacock, J.A. (1999) Cosmological Physics, Cambridge University Press, Cambridge. Penzias, A.A. and Wilson, R.W. (1965) A Measurement of Excess Antenna Temperature at 4080 Mc/s, Astrophys. J. 142, 419-421.

Seckbach, J. (ed.) (2004) Origins: Genesis, Evolution and Diversity of Life, Kluwer, Dordrecht, The Netherlands.

Singh, S. (2005) Big Bang: The Origin of the Universe, HarperCollins.

Ward, P.D. and Brownlee, D. (2000) Rare Earth: Why Complex Life Is Uncommon in the Universe, Springer, New York.

Weinberg, S. (1994) The First Three Minutes: A Modern View of the Origin of the Universe, Perseus Publishing, New York.

Biodata of Koichiro Matsuno, the author of "Molecular Imprints of Reaction Network: Living or Non-Living"

Koichiro Matsuno is currently Professor Emeritus of biophysics in the Nagaoka University of Technology in Japan. He obtained his Ph.D. in physics from the Massachusetts Institute of Technology in 1971. Dr. Matsuno's research interest includes chemical evolution, cell motility and evolutionary processes. He is the author of the following books: Protobiology: Physical Basis of Biology (CRC Press, Boca Raton, FL, 1989); What Is Internal Measurement (Seido-sha, Tokyo, 2000); Molecular Evolution and Protobiology co-author with K. Dose, K. Harada, and D. L. Rohlfing (Plenum Press, New York, 1984); The Origin and Evolution of the Cell, with H. Hartman (World Scientific Publishing Co., Singapore, 1992); Uroboros: Biology Between Mythology and Philosophy, with W Lugowiski (Arboretum, Wroclaw Poland, 1998).

E-mail: [email protected]

Koicheiro Matsuno
+1 0

Responses

  • daniel jamieson
    What is time zero in big bang?
    1 year ago

Post a comment