Chapter Lifes First Appearance on Earth

Abbott, D. H., and Hoffman, S. E. 1984. Archaean plate tectonics revisited. 1. Heat flow, spreading rate, and the age of subducting oceanic lithosphere and their effects on the origin and evolution of continents. Tectonics 3:429-448.

Bada, J. L.; Bigham, C.; and Miller, S. L. 1994. Impact melting of frozen oceans on the early Earth: Implications for the origin of life. Proceedings of the National Academy of Sciences USA 91:1248-1250.

Barns, S. M.; Fundyga, R. E.; Jeffries, M. W.; and Pace, N. R. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proceedings of the National Academy of Sciences USA 91:1609-1613.

Baross, J. A., and Deming, J. W. 1995. Growth at high temperatures: Isolation and taxonomy, physiology, and ecology. In The microbiology of deep-sea hydrothermal vent habitats, ed. D. M. Karl, pp. 169-217. Boca Raton, FL: CRC Press.

Baross, J. A., and Hoffman, S. E. 1985. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life Evolution Biosphere 15:327-345.

Brakenridge, G. R.; Newsom, H. E.; and Baker, V. R. 1985. Ancient hot springs on Mars: Origins and paleoenvironmental significance of small Martian valleys. Geology 13:859-862.

Carl, M. H. 1996. Water on Mars. New York: Oxford Univ. Press.

Cloud, P. 1988. Oasis in space: Earth history from the beginning. New York: W. W. Norton.

Converse, D. R.; Holland, H. D.; and Edmond, J. M. 1984. Flow rates in the axial hot springs of the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits. Earth Planet. Sci. Lett. 69:159-175.

Criss, R. E., and Taylor, H. P., Jr. 1986. Meteoric-hydrothermal systems. Rev. Mineral. 16:373-424.

Daniel, R. M. 1992. Modern life at high temperatures. In Marine Hydrothermal Systems and the Origin of Life, ed. N. Holm, Orig. Life Evolution Biosphere 22:33-42.

de Duve, C. 1995. Vital dust: Life as a cosmic imperative. New York: Basic Books.

Doolittle, W. F. 1999. Phylogenetic classification and the Universal Tree. Science 284:2124.

Glikson, A. 1995. Asteroid comet mega-impacts may have triggered major episodes of crustal evolution. Eos, 76:49-54.

Gonzalez, G. 1998. Extraterrestrials: A Modern View. Society 35 (5): 14-20.

Griffith, L. L., and Shock, E. L. 1995. A geochemical model for the formation of hydrothermal carbonate on Mars. Nature 377:406-408.

Griffith, L. L., and Shock, E. L. 1997. Hydrothermal hydration of Martian crust: Illustration via geochemical model calculations. J. Geophys. Res. 102:9135-9143.

Hoyle, F.; Wickramasinghe, N. C.; and Mufti, S. A. 1985. The case for interstellar micro-organisms. Astrophysics and Space Science 110:401.

Karl, D. M. 1995. Ecology of free-living, hydrothermal vent microbial communities. In The microbiology of deep-sea hydrothermal vent habitats, ed. D. M. Karl, pp. 35-124. Boca Raton, FL: CRC Press.

MacLeod, G.; McKeown, C.; Hall, A. J.; and Russell, M. J. 1994. Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Orig. Life Evolution Biosphere 23:19-41.

McCollom, T. M., and Shock, E. L. 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochimica et Cosmochimica Acta (in press).

McSween, Jr., H. Y. 1994. What we have learned about Mars from SNC meteorites. Meteoritics 29:757-779.

Miller, S., and Lazcano, A. 1996. From the primitive soup to Cyanobacteria: It may have taken less than 10 million years. In Circumstellar habitable zones, ed. L. Doyle, pp. 393-404. Menlo Park, CA: Travis House.

Pace, N. R. 1991. Origin of life—facing up to the physical setting. Cell 65:531 -533.

Romanek, C. S.; Grady, M. M.; Wright, I. P.; Mittlefehldt, D. W.; Socki, R. A.; C. T. Pillinger, C. T.; and Gibson, Jr., E. K. 1994. Record of fluid rock interactions on Mars from the meteorite ALH84001. Nature 372:655-657.

Russell, M.J.; Daniel, R. M.; and Hall, A.J. 1993. On the emergence of life via catalytic iron sulphide membranes. Terra Nova 5:343-347.

Russell, M. J.; Daniel, R. M.; Hall, A. J.; and Sherringham, J. 1994. A hy-drothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Molec. Evol. 39:231-243.

Russell, M. J., and Hall, A. J. 1995. The emergence of life at hot springs: A basis for understanding the relationships between organics and mineral deposits. In Proceedings of the Third Biennial SGA Meeting, Prague, Mineral deposits: From their origin to their environmental impacts, ed. J. Pasava, B. Kribek, and K. Zak, pp. 793-795.

Russell, M. J., and Hall, A.J. 1997. The emergence of life from iron mono-sulphide bubbles at a hydrothermal redox front. J. Geol. Soc. (in press).

Russell, M. J.; Hall, A. J.; Cairns-Smith, A. G.; and Braterman, P. S. 1988. Submarine hot springs and the origin of life. Nature 336:117.

Russell, M. J.; Hall, A. J.; and Turner, D. 1989. In vitro growth of iron sulphide chimneys: Possible culture chambers for origin-of-life experiments. Terra Nova 1:238-241.

Schwartzman, D.; McMenamin, M.; and Volk, T. 1993. Did surface temperatures constrain microbial evolution? BioScience 43:390-393.

Seewald, J. S. 1994. Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions. Nature 370:285-287.

Segerer, A. H.; Burggraf, S.; Fiala, G.; Huber, G.; Huber, R.; Pley, U.; and Stetter, K. O. 1993. Life in hot springs and hydrothermal vents. Orig. Life Evol. Biosphere 23:77-90.

Shock, E. L. 1990a. Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig. Life Evol. Biosphere 20: 331-367.

Shock, E. L. Chemical environments in submarine hydrothermal systems. 1992a. In Holm, N. Marine hydrothermal systems and the origin of life, ed. N. Holm. Orig. Life Evol. Biosphere 22:67-107.

Shock, E. L.; McCollom, T.; and Schulte, M. D. 1995. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems. Orig. Life Evol. Biosphere 25:141-159.

Shock, E. L., and Schulte, M. D. 1997. Hydrothermal systems as locations of organic synthesis on the early Earth and Mars. Orig. Life Evol. Biosphere (in press).

Sleep, N. H.; Zahnle, K. J.; Kasting, J. F.; and Morowitz, H.J. 1989. Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139-142.

Stetter, K. O. 1995. Microbial life in hyperthermal environments. ASM News, American Society for Microbiology 61:285-290.

Treiman, A. H. 1995. A petrographic history of Martian meteorite ALH84001: Two shocks and an ancient age. Meteoritics 30:294-302.

Von Damm, K. L. 1990. Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Ann. Rev. Earth Planet. Sci. 18:173-204.

Watson, L. L.; Hutcheon, I. D.; Epstein, S.; and Stolper, E. M. 1994. Water on Mars: Clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265:86-90.

Wilson, E. 1992. The diversity of life. Cambridge, MA: Harvard Univ. Press.

Wilson, L., and Head, III, J. W. 1994. Mars: Review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys. 32:221-263.

Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221-271.

Woese, C. R.; Kandler, O.; and Wheelis, M. L. 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eu-carya. Proceedings of the National Academy of Sciences USA 87:4576-4579.

Chapter 5. How to Build Animals

Akam, M., et al., eds. 1994. The evolution of developmental mechanisms. Cambridge, England: The Company of Biologists, Ltd.

Brasier, M. D.; Shields, G.; Kuleshoy, V. N.; and Zhegallos, E. A. 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia. Geological Magazine 133:445-485.

Bowring, S. A., Grotzinger, J. P.; Isachsen, C. E.; Knoll, A. H.; Pelechaty, S. M.; and Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. Science 261:1293-1298.

Carroll, S. B. 1995. Homeotic genes and the evolution of arthropods and chordates. Nature 376:479-485.

Chen, J.-Y., and Erdtmann, B.-D. 1991. Lower Cambrian fossil lagerstatte from Chengjiang, Yunnan, China: Insights for reconstructing early metazoan life. In The early evolution of metazoa and the significance of problematic taxa, ed. A. M. Simonetta and S. Conway Morris, pp. 57-76. Cambridge, England: Cambridge Univ. Press.

Conway Morris, S. 1997. Defusing the Cambrian "explosion"? Current Biology 7:R71-R74.

Crimes, T. P. 1994. The period of early evolutionary failure and the dawn of evolutionary success: The record of biotic changes across the Precambrian-Cambrian boundary. In The paleobiology of trace fossils, ed. S. K. Donovan, pp. 105-133. London: Wiley.

Erwin, D. H. 1993. The origin of metazoan development. Biological Journal of the Linnean Society 50:255-274.

Evans, D. A. 1998. True polar wander, a supercontinental legacy. Earth and Planetary Science Letters 157:1-8.

Evans, D. A.; Beukes, N. J.; and Kirschvink, J. L. 1997. Low-latitude glaciation in the Paleoproterozoic era. Nature 386(6622):262-266.

Evans, D. A.; Ripperdan, R. L.; and Kirschvink, J. L. 1998. Polar wander and the Cambrian (response). Science 279:16.

Full article accessible at http://www.sciencemag.org/cgi/content/full/279/5347/9a

Evans, D. A.; Zhuravlev, A. Y.; Budney, C. J.; and Kirschvink, J. L. 1996. Pa-leomagnetism of the Bayan Gol Formation, western Mongolia. Geological Magazine 133:478-496.

Fedonkin, M. A., and B. M. Waggoner. 1996. The Vendian fossil Kimberella: The oldest mollusk known. Geological Society of America, Abstracts with Program. 28(7):A-53.

Gerhart, J., and Kirschner, M. 1997. Cells, embryos, and evolutionToward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability. Boston: Blackwell Science Inc.

Grotzinger, J. P.; Bowring, S. A.; Saylor, B.; and Kauffman, A.J. 1995. New biostratigraphic and geochronological constraints on early animal evolution. Science 270:598-604.

Kappen, C.; and Ruddle, F. H. 1993. Evolution of a regulatory gene family: HOM/Hox genes. Current Opinion in Genetics and Development 3:931 -938.

Knoll, A., and Carroll, S. 1999. Early animal evolution: Emerging views from comparative biology and geology. Science 284:2129-2137.

Knoll, A. H.; Kaufman, A. J.; Semikhatov, M. A.; Grotzinger, J. P.; and Adams, W. 1995. Sizing up the sub-Tommotian unconformity in Siberia. Geology 23:1 139-1 143.

Margulis, L., and Sagan, D. 1986. Microcosmos. New York: Simon & Schuster.

Raff, R. A. 1996. The shape of life. Chicago: Univ. of Chicago Press.

Schwartzman, D., and Shore, S. 1996. Biotically mediated surface cooling and habitability for complex life. In Circumstellar habitable zones, ed. L. Doyle, pp. 421-443. Menlo Park, CA: Travis House. Seilacher, A.; Bose, P. K.; and Pfluger, F. 1998 Triploblastic animals more than 1 billion years ago: Trace fossil evidence from India October 2; Science 282:80-83.

Valentine, J. W. 1994. Late Precambrian bilaterans: Grades and clades. Proceedings of the National Academy of Sciences 91:6751-6757. Valentine, J. W.; Erwin, D. H.; and Jablonski, D. 1996. Developmental evolution of metazoan body plans: The fossil evidence. Developmental Biology 173:373-381. Wilmer, P. 1990. Invertebrate relationships: Patterns in animal evolution. Cambridge,

England: Cambridge Univ. Press. Wray, G. A.; Levinton, J. S.; and Shapiro, L. 1996. Molecular evidence for deep pre-Cambrian divergences among the metazoan phyla. Science 274:568-573.

Chapter 6. Snowball Earth

Bertani, L. E.; Huang, J.; Weir, B.; and Kirschvink, J. L. 1997. Evidence for two types of subunits in the bacterioferritin of Magnetospirillum magneto-tacticum. Gene 201:31 -36. Evans, D. A.; Beukes, N. J.; and Kirschvink, J. L. 1997. Low-latitude glaciation in the Paleoproterozoic era. Nature 386(6622):262-266. Evans, D. A.; Zhuravlev, A. Y.; Budney, C. J.; and Kirschvink, J. L. 1996. Pa-leomagnetism of the Bayan Gol Formation, western Mongolia. Geological Magazine 133:478-496. Hoffman, P.; Kaufman, A.; Halverson, G.; and Schrag, D. 1998. A Neopro-

terozoic Snowball Earth. Science 281:1342-1346. Kirschvink, J. L. 1992. A paleogeographic model for Vendian and Cambrian time. In The Proterozoic biosphere: A multidisciplinary study, ed. J. W. Schopf,

C. Klein, and D. Des Maris, pp. 567-581. Cambridge, England: Cambridge Univ. Press.

Kirschvink, J. L.; Gaidos, E. J.; Bertani, L. E.; Beukes, N. J.; Gutzmer, J.; Evans,

D. A.; Maepa, L. N.; and Steinberger, R. E. The paleoproterozoic snow ball Earth: deposition of the Kalahari manganese field and evolution of the Archaea and Eukarya kingdoms. Science, in extended review (as of 11/98). Kitchner, P. 1996. The lives to come: The genetic revolution and human possibilities.

New York: Touchstone Books. Schwartzman, D.,- McMenamin, M.,- and Volk, T. 1993. Did surface temperatures constrain microbial evolution? BioScience 43:390-393. Schwartzman, D., and Shore, S. 1996. Biotically mediated surface cooling and habitability for complex life. In Circumstellar habitable zones, ed. L. Doyle, pp. 421-443. Menlo Park, CA: Travis House.

Chapter 7. The Enigma of the Cambrian Explosion

Aitken, J. D., and Mcllreath, I. A. 1984. The Cathedral Reef Escarpment, a

Cambrian great wall with humble origins. Geos 13:17-19. Allison, P. A., and Brett, C. E. 1995. In situ benthos and paleo-oxygenation in the Middle Cambrian Burgess Shale, British Columbia, Canada. Geology 23:1079-1082.

Aronson, R. B. 1992. Decline of the Burgess Shale fauna: Ecologic or tapho-

nomic restriction? Lethaia 25:225-229. Bergstrom, J. 1986. Opabinia and Anomalocaris, unique Cambrian "arthropods."

Lethaia 19:241-246. Briggs, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod.

Palaeontology 22:631 -664. Briggs, D. E. G. 1992. Phylogenetic significance of the Burgess Shale crustacean Canadaspis. Acta Zoologica (Stockholm) 73:293-300. Briggs, D. E. G., and Collins, D. 1988. A Middle Cambrian chelicerate from

Mount Stephen, British Columbia. Palaeontology 31:779-798. Briggs, D. E. G., and Fortey, R. A. 1989. The early radiation and relationships of the major arthropod groups. Science 246:241-243. Briggs, D. E. G., and Whittington, H. B. 1985. Modes of life of arthropods from the Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of Edinburgh 76:149-160. Budd, G. E. 1996. The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group. Lethaia 29:1-14.

Butterfield, N. J. 1990a. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16:272-286.

Butterfield, N.J. 1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology 23:247-262.

Butterfield, N.J., and Nicholas, C.J. 1996. Burgess Shale-type preservation of both non-mineralizing and "shelly" Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology 70:893-899.

Chen Junyuan; Edgecombe, G. D.; Ramskold, L.; and Zhou Guiqing. 1995. Head segmentation in early Cambrian Fuxianbuia: Implications for arthropod evolution. Science 268:1339-1343.

Chen Junyuan; Edgecombe, G. D.; and Ramskold, L. 1997. Morphological and ecological disparity in naraoiids (Arthropoda) from the Early Cambrian Chengjiang fauna, China. Records of the Australian Museum 49:1-24.

Chen Junyuan; Ramskold, L.; and Zhou Guiqing. 1994. Evidence for monophyly and arthropod affinity of Cambrian predators. Science 264:1304-1308.

Chen Junyuan; Zhou Guiqing; Zhu Maoyan; and Yeh K. Y. ca. 1996. The Chengjiang biota. A unique window on the Cambrian explosion. National Museum of Natural Science, Taiwan. [in Chinese]

Cloud, P. 1987. Oasis in space: Earth history from the begining. New York: Norton.

Collins, D.; Briggs, D.; and Conway Morris, S. 1983. New Burgess Shale fossil sites reveal Middle Cambrian faunal complex. Science 222:163-167.

Conway Morris, S. 1979a. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics 10:327-349.

Conway Morris, S., ed. 1982. Atlas of the Burgess Shale. London: Palaeontologi-cal Association.

Conway Morris, S. 1989. Burgess Shale faunas and the Cambrian explosion. Science 246:339-346.

Conway Morris, S. 1989. The persistence of Burgess Shale-type faunas: Implications for the evolution of deeper-water faunas. Transactions of the Royal Society of Edinburgh: Earth Sciences 80:271 -283.

Conway Morris, S. 1990. Late Precambrian and Cambrian soft-bodied faunas. Annual Review of Earth and Planetary Sciences 18:101-22.

Conway Morris, S. 1992. Burgess Shale-type faunas in the context of the "Cambrian explosion": A review. Journal of the Geological Society, London 149:631-636.

Conway Morris, S. 1993a. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology 36:593-635.

Conway Morris, S. 1993b. The fossil record and the early evolution of the metazoa. Nature 361:219-225.

Conway Morris, S. 1998. Crucible of creation. Oxford Univ. Press.

Conway Morris, S., and Whittington, H. B. 1985. Fossils of the Burgess Shale, a national treasure in Yoho National Park, British Columbia. Miscellaneous Reports of the Geological Survey of Canada 43:1-31.

Darwin, C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.

Dzik, J. 1995. Yunnanozoon and the ancestry of chordates. Acta Palaeontologica Polonica 40:341-360.

Erwin, D. M. 1993. The origin of metazoan development: A palaeobiological perspective. Biological Journal of the Linnean Society 50:255-274.

Erwin, D. M.; Valentine, J.; and Jablonski, D. 1997. The origin of animal body plans. American Scientist 85(2):126-137.

Fritz, W. H. 1971. Geological setting of the Burgess Shale. In Symposium on Extraordinary Fossils. Proceedings of the North American Paleontological Convention, Field Museum of Natural History, Chicago. September 5-7, 1969, Part I, pp. 1155-1170. Lawrence, KS: Allen Press.

Glaessner, M. F., and Wade, M. 1966. The late precambrian fossils from Edi-acara, South Australia. Palaeontology 9 (4):599-628.

Gould, S.J. 1986. Wonderful life. New York: Norton.

Gould, S.J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: Why we must strive to quantify morpho-space. Paleobiology 17:411-423.

Grotzinger, J. P.; Bowring, S. A.; Saylor, B. Z.; and Kaufman, A.J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598-604.

Kirschvink, J. L.; Magaritz, M.; Ripperdan, R. L.; Zhuravlev, A. Y.; and Rozanov, A. Y. 1991. The Precambrian-Cambrian boundary: Magne-tostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. GSA Today 1:69-91.

Kirschvink, J. L.; Ripperdan, R. L.; and Evans, D. A. 1997. Evidence for a large-scale Early Cambrian reorganization of continental masses by in-ertial interchange true polar wander. Science 277:541-545.

Kirschvink, J. L., and Rozanov, A. Y. 1984. Magnetostratigraphy of Lower Cambrian strata from the Siberian Platform: A paleomagnetic pole and a preliminary polarity time scale. Geological Magazine 121:189-203.

Lowenstam, H. A., and Margulis, L. 1980. Evolutionary prerequisites for early Phanerozoic calcareous skeletons. BioSystems 12:27-41.

Ludvigsen, R. 1989. The Burgess Shale: Not in the shadow of the Cathedral Escarpment. Geoscience Canada 16:51 -59.

McMenamin, M., and McMenamin, R. 1990. The emergence of animals. New York: Columbia Univ. Press.

Ramskold, L., and Hou Xianguang. 1991. New early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature 351:225-228.

Rigby, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana 2:1-105.

Seilacher, A.; Bose, P. K.; and Pfluger, F. 1998. Triploblastic animals more than 1 billion years ago: Trace fossil evidence from India October 2; Science 282:80-83.

Simonetta, A. M., and Conway Morris, S., eds. 1991. The early evolution of meta-zoa and the significance of problematic taxa. Cambridge, England: Cambridge Univ. Press.

Simonetta, A. M., and Insom, E. 1993. New animals from the Burgess Shale (Middle Cambrian) and their possible significance for the understanding of the Bilateria. Bollettino Zoologica 60:97-107.

Towe, K. M. 1996. Fossil preservation in the Burgess Shale. Lethaia 29:107-108.

Whittington, H. B. 1971a. The Burgess Shale: History of research and preservation of fossils. In Symposium on extraordinary fossils. Proceedings of the North American Paleontological Convention, Field Museum of Natural His tory, Chicago, September 5-7, 1969, Part I, pp. 1170-1201. Lawrence, KS: Allen Press.

Whittington, H. B. 1979. Early arthropods, their appendages and relationships. In The origin of major invertebrate groups, ed. M. R. House. Systematics Association Special Volume 12, pp. 253-268.

Whittington, H. B., and Briggs, D. E. G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B 309:569-609.

Wills, M. A.; Briggs, D. E. G.; and Fortey, R. A. 1994. Disparity as an evolutionary index: A comparison of Cambrian and Recent arthropods. Paleobiology 20:93-130.

Wilson, E. O. 1994. The diversity of life. London: Penguin.

Yochelson, E. L. 1996. Discovery, collection, and description of the Middle Cambrian Burgess Shale biota by Charles Doolittle Walcott. Proceedings of the American Philosophical Society 140:469-545.

Was this article helpful?

0 0

Post a comment