Nature through Time

The ideas of the philosophers Plato and Aristotle, as well as those of many Christian thinkers, have shaped Western concepts of nature and time—even though sometimes these ideas were not in complete harmony with one another. From Plato came the idea of idealism, the concept that the world and its objects as perceived by our senses were not "real" but only an imperfect copy of what existed in a "transcendent world of pure and immutable forms" (Durant 1998: 269). In The Republic, Plato uses the metaphor of our images of the world being similar to flickering shadows cast on a wall, unreal in themselves, with the true reality being the light that produces the shadows. Christian scholars reformulated idealism in terms of the Creation: God created the world according to a plan; there was an ideal form that lodged in the mind of God, and what we see in the real world are merely variants—imperfect copies in some cases—of that ideal. Dwelling as an idea in the mind of God is the ideal rabbit, human being, or barnacle: the variation in size, shape, color, and so on, that we see in nature is less important than the true essence of rabbits, humans, and barnacles that resides in the mind of God. (A linguistic fossil of this view—though not carrying the same meaning—is the biological term type specimen.)

From Aristotle came a view of nature that focused not only on form but also on function. Aristotle wrote of the purpose of nature: why something existed, not just what form it took. The rain falls to make the grass grow. Deer have long legs to run away from predators. These ideas also influenced Christian theology: humans exist because they had been created by God to worship God. Explaining something by its purpose is known as teleology. It is understandable that form is related to purpose: form follows (and contributes to) function, after all. To allow it to escape from predators, the deer has long legs: the legs of a deer were designed to enable it to survive, as its teeth were designed to allow it to eat woody shoots—as the teeth of the wolf were designed to eat meat. Thus, purpose (teleology) and design were linked concepts.

Reflecting his view of immutable forms, Aristotle classified plants and animals in terms of kinds of organisms that could be ranked in a linear "great chain of being," or "scale of nature" (scala naturae). This essentialist view fit very comfortably with the Christian doctrine of special creationism. God created all creatures great and small, and simple to complex, and the span of created beings could be ranked hierarchically. Humans were almost at the top of the great chain of being, right beneath angels, which in turn were second to God, who was at the very top of the hierarchy.

The doctrine of special creationism incorporated these Greek ideas—the hierarchical ordering of nature and of design and purpose—and included the Christian idea of an omnipotent, omniscient creator who stood outside of nature. In the theology of special creationism, God created the universe at one time (taking six days in the most common view, although, as discussed in chapter 3, gap creationism considered two special creations) in essentially its present form. God created living things as we see them today for a particular environment and way of life. God also created stars and galaxies as we see them, and the planet Earth as we see it today, as the home of human beings and the creatures over which we have been given dominion and stewardship.

For most of European history, educated people blended the Christian and Greek views and concluded that the world was stable and largely unchanging. In such a conception, the age of Earth was unimportant: it was not until theologians untangling the genealogies of the Bible calculated that Earth was approximately 6,000 years old that anyone considered the question of the age of Earth even worth asking: the specially created, essentialist universe of stars, planets, Earth, and its inhabitants had come into being in its present form, and was assumed to be virtually the same as it had been at the Creation. The notion that Earth—much less living things—could have had a history was not entertained throughout the Middle Ages. Stasis extended even to medieval and feudal social life: everyone's place in society was determined by birth. Serfs were to serve, the nobility were to rule them, and kings had a divine right— God given—to rule. The sociopolitical stasis of society mirrored the conception of an unchanging natural world, all created the way it was by God, for God's purposes, whatever they may be.

But there was growing evidence that things might not be static after all—both socially and in the natural world. By the Renaissance in the 1500s, a middle class began growing and society was rather less static (though Shakespeare's Henry V still reflects enthusiasm for the old view of the divine right of monarchs to rule). The expansion of societal boundaries continued through the Enlightenment of the 1700s, as cities grew, the merchant class expanded, and democratic ideas began to replace those of the divine right of the church and hereditary monarchs to rule.

The conception of nature as stable—and known—was troubled by the European discovery and exploration of North and South America and Oceania from about 1500 to 1800. The age of exploration exposed Europeans to huge unknown natural areas. Even if Columbus died thinking he had discovered a route to the Orient, it soon became clear to others that the animals, plants, people, and geological features he had encountered were truly from the New World. During the 1700s and through the 1800s, the study of nature—natural history—was a popular pastime of not only educated individuals but also ordinary citizens. The Swedish natural historian Carl von Linne (whose name is Latinized as Linnaeus) developed a useful classification system for plants and animals that grouped them into gradually broader categories: species were grouped into genera, genera into families, families into orders, orders into classes, and so on. He received specimens to classify from all over the world, sent not only by captains of exploring ships but even by traders and common seamen. Another "new world" became apparent with the invention of the microscope in the early 1600s and the discovery of microorganisms. Europeans of the Enlightenment experienced an expansion of knowledge of the natural world that disrupted old ways of thinking, much as new economic and political systems disrupted the social systems of the day.

The discoveries of natural history had implications for Christian religious beliefs. Europe, Africa, and Asia were mentioned in the Bible, but the New World was not; thus, the Bible did not contain all knowledge. Puzzles appeared: there were animal and plant species in North America and other new lands that were not found in the Old World, such as opossums, llamas, tobacco, tomatoes, potatoes, and corn. Had the newly discovered species been created at the same time as known ones? Had they merely died out in some places? In the early 1800s, the French comparative anatomist Georges Cuvier had determined that fossil bones found in Europe were indeed sufficiently similar to living forms to be classified as mammals or reptiles, and even more narrowly as elephants and other known entities. Yet these bones were sufficiently different that it was clear that they came from species that no longer existed. The disappearance of huge reptiles (dinosaurs) and certain mammals, such as mammoths and saber-toothed cats, was unexplained. The notion that some kinds had become extinct was theologically troubling because of the implication that the Creation might not have been perfect, which in turn generated problems for the concept of the original sin of Adam and Eve. Perhaps the species represented by the European fossils were actually still living in the New World—that would solve some theological problems. One of the instructions Thomas Jefferson gave to the explorers Meriwether Lewis and William Clark, in fact, was to keep watch for mammoths and other animals known only from the fossil record as they explored the western reaches of the North American continent. Cuvier himself argued that extinctions of some species had occurred and were the result of a series of environmental catastrophes. To some of the scientists of the day, the most recent of these catastrophes was Noah's Flood.

Even more difficult to explain—and creating theological problems in their own right—were the human inhabitants of the new lands. The Bible did not mention

Native Americans, Polynesians, and other peoples new to Europeans. Wild tales were told of one-eyed races, of people who barked like dogs or who were part animal, and other monstrous creatures. But real, undeniable human beings were encountered as well. How could they be explained? Were they also the children of Adam? Or were they creatures of Satan? Were they human? Did they have souls? Could they become Christian? In 1537, Pope Paul III declared that the Indians of the New World were indeed human and not animals—and therefore should not be enslaved (Gossett 1965: 13). They thus had souls and were fit subjects for Christianization. But how did they come to be living where they were found? If Noah's ark had landed at Ararat, how did Native Americans get to the New World?

In 1665, Isaac La Peyrere produced the first version of gap creationism (see chapter 3), proposing an explanation for these newly discovered peoples that was compatible with the Bible. He proposed that Genesis records two creations, the first being described in Genesis 1, and the second—the Adam and Eve creation—in Genesis 2. Native Americans, Polynesians, Australian Aborigines, and anyone else not specifically mentioned in the Bible were descendants of the first, or preadamite, creation. The preadamites were also the source of Cain's wife—solving another theological problem. In the second, Adamic creation, Genesis 2 and following, God created anew, and Adam and Eve were the progenitors of the more familiar human beings in Europe, Asia, and Africa. Unfortunately, this theological view generated problems of its own, raising the issue of whether preadamites were innocent of original sin. Presumably so—as they were unrelated to Adam—but then, were they in need of salvation by Jesus? The discovery of the New World required the rethinking of many Christian doctrines, as new facts had to be fit into old frameworks.

More new facts were forthcoming from the study of Earth in the late 1700s. In Great Britain, William Smith was given the task of surveying the countryside preparatory to the excavation of a canal system across England (Winchester 2001). It was clear that Great Britain consisted of a variety of types of geological formations, some of which held water better than others, and it behooved the young surveyor to be able to identify and classify the various layers to ensure that canals functioned properly. He did a superb job, tracing strata for sometimes hundreds of miles across the countryside and making detailed maps. He made a discovery (which Cuvier and French geologists confirmed): different strata consistently contained different fossils, and he could classify a stratum if he knew what kinds of fossils it contained, regardless of where it was found. He also found that the deeper the layer, the more different the fossils were from living plants and animals. Many fossils were no longer represented by living animals—especially the deeper ones. It seemed logical that, by and large, bottom layers were older than top layers; thus, there were older animals that differed from more recent ones, and extinct animals that had lived long ago. Estimates could be made of the length of time it took for a valley to erode or for a chain of mountains to lift up. Through careful description and logic, Smith demonstrated the principle that rocks reflect time and change (Winchester 2001).

An appreciation also grew for the nature of geological processes such as sedimentation and erosion; the understanding that nature was dynamic rather than static began to grow as knowledge of the natural world—from geology as well as biology—increased through the 1700s and 1800s. Arguably, the view of nature as dynamic required the amassing of a critical amount of accurate information about the natural world, which hadn't accumulated until the early 1800s. A relationship among geology, biology, and time began to be appreciated: by the mid-nineteenth century, Darwin's time, the once-radical idea that Earth was really quite old, and had changed through time, was becoming well accepted in the scientific community and by educated people in general—including the clergy. If Earth had changed, couldn't other aspects of nature also have changed? Darwin's contribution to the growing appreciation that nature was dynamic rather than static was to add living things to the list of natural phenomena that changed through time.

Was this article helpful?

0 0

Post a comment