Auld Reekie

She resolved to bestow on him a liberal education . . .

John Play/air, 1805

It is fitting that James Hutton, the discoverer of the earth's antiquity and the father of modern geology, was born in Edinburgh, the capital of Scotland. Surely no other city was more defined by its geology. Standing not two miles from the Firth of Forth, the finger of a bay that opens into the North Sea, the Edinburgh of James Hutton's day was picturesque, but the weathered topography belied a violent and chaotic antiquity. In fact, the geologic history of the area was a textbook study of the very processes that Hutton would later discover; it had alternated from sea to dry land at least four times in the distant past. Geologists have now determined that volcanic activity first occurred in the area approximately 400 million years ago. Over the next 45 million years, the region quieted and the low-lying plain around the volcanoes became flooded by tropical seas. A second wave of volcanism struck the area a few million years later (about 350 million years ago), forming a series of cones and raising the entire region above the sea. For the next 65 million years, the area was largely calm. However, the tropical or semi-tropical environment vacillated between low-lying forested land and flooded shallow seas. During the lengthy periods when the land was flooded, sediments formed from eroded grains and dead saltwater organisms settling at the bottom of the sea; over time, the sediments almost buried the volcanic cones. Then, at the 285-million-year mark, violence returned, again in the form of volcanic activity. This time, though, the magma did not break through the surface, instead remaining just below. The magma "intruded" into the sedimentary rocks, and was later—much later—revealed when erosion exposed it. Geologists now call an exposure of intruded magma either a dike or a sill. Thirty-five million years later (now 250 million years ago), the region was struck by a series of earthquakes, the result of mountain-building pressure that pushed and distorted the sedimentary strata. After this episode, geologic calm finally returned. Because the area was now permanently above sea level, erosion of the exposed land was the primary agent of change. Finally, 2 million years ago, the last great ice age engulfed the region and buried it under glacial ice.

Thus, all the hills that now define the Edinburgh region are remnants of the ancient volcanic activity. None is more impressive than Castle Rock. The landmark is a spectacular, nearly symmetrical cylinder of basalt; a black, shiny rock that looks almost otherworldly. Formed from magma that remained inside the ancient volcano rather than being forced out, the structure is called a volcanic plug. Today, Castle Rock rises like a broad skyscraper about 450 feet above the plain, essentially the same size at the summit as it is at the base. In fact, when one stands below and looks up, the jagged surface appears to widen as it ascends.

Castle Rock was the highest part of Hutton's Edinburgh, yet most of the old town was built on another odd geologic structure attached to the mountain of basalt. It was formed when the last ice sheet flowed slowly over the area, moving west to east, scraping across the land that came before it. It had little trouble grinding away and burying the softer rocks, but the basalt of Castle Rock was a different matter. Because of its hardness, the ice sheet was essentially forced to move over and around it. After passing around Castle Rock, the ice left a long and thin wisp of debris attached to the volcanic plug. This kind of formation is called a crag and tail by geologists, and it resembles a comet. When the ice age ended between 15,000 and 10,000 years ago and the glaciers melted away, the crag and tail remained as evidence of the chilly past. Today, the tail looks like a gentle uphill ramp, narrowing as it climbs, that connects the low-lying plain with Castle Rock. Near the pinnacle, the tail is a sharp ridge, perhaps only 50 yards across, the land plunging a dramatic 400 feet to the flat surface below.

As one approaches the city from the Firth of Forth to the north, or from Glasgow to the west, Edinburgh rises majestically, as if out of a fairy tale, its neighboring hills standing as sentries.

Evidence shows that Castle Rock has been inhabited continuously since Neolithic hunters and gatherers first migrated to the region 4,000 years ago. Sheer on all sides except for the ramplike approach from the east, the mount, which has about an acre of flat rock at the top, was easily defended because the inhabitants could see for dozens of miles in every direction. They could survey the Firth of Forth to the north, and the hills to the south and east. A surprise attack was impossible. The same factors that made it attractive to the first humans made it attractive to all subsequent inhabitants of this part of Scotland, from the tribes known as the Gododdins during the Roman era to the Angles during the Dark Ages. At some point, the settlement acquired the name Edwinesburgh, probably after King Edwin of Northumbria, who ruled the region in the early seventh century. Though Castle Rock was inhabited for thousands of years, the first to build a lasting structure at the top was King Malcolm III, who built the first stone castle and chapel (still standing) after he defeated the infamous Macbeth in 1057. The town that sprang up was built completely within the castle's protective walls. After a few decades, however, the needs of the inhabitants outgrew these confines, and the first structures were built beyond the walls and on the downward-sloping ridge.

About seventy-five years after the defeat of Macbeth, construction began on the first large religious building in Edinburgh. Holyrood Abbey was situated almost exactly a mile away from the castle, at the end of the sloping "tail." Built in the 1120s and 1130s by Malcolm III's son, King David, the guesthouse of the continuously expanding religious compound was later con verted into the royal residence, called the Palace of Holyrood-house. From Holyrood, the kings and queens of Scotland ruled the country, the castle now being reserved for military purposes. Connecting the castle and Holyrood was the town's main thoroughfare, High Street. The cathedral, St. Giles, completed in 1243, was built a couple of hundred yards below the castle, right on High Street. Castle at the top, palace and abbey below, and St. Giles in the middle of the connecting High Street—these were the focal points of Edinburgh. By the year of James Hut-ton's birth, 1726, the castle was massive, its 30-foot-high fortress walls running along the edge of Castle Rock and enclosing several large buildings that housed as many as 3,000 soldiers. Holy-roodhouse consisted of several chateaulike structures and a ruined church, the complex surrounded by well-kept gardens and its own protective wall. High Street was paved with stone and was very wide, especially near St. Giles and its courtyard. The boulevard was, and still is, known as the Royal Mile.

The final defining structure of Edinburgh was built in the early 1500s, after Scotland's army suffered tremendous losses at the hands of the English in the disastrous battle of Flodden Field in 1513. Fearing that the now-defenseless capital would be counterattacked, Edinburgh's leaders convinced every inhabitant to assist in building a defensive wall that would surround the city. The wall tracked down the ridge on either side of the Royal Mile and then closed off before Holyroodhouse. Though the Flodden Wall was impressive—it reached heights of nearly 25 feet in places—it ultimately did little to protect Edinburgh. A generation after the wall was built, in 1544, the English successfully broke through and razed most of the wood-and-thatch city. However, this would be the last time large parts of the city would be destroyed. The Scots would rebuild by using local sandstone, which greatly reduced the risk of fires. Though it failed to keep out the English invaders, the Flodden Wall did serve as a tangible boundary. From now on, Edinburgh would be confined to the land within the wall.

Flodden Wall was the final defining man-made structure of Edinburgh. However, no description of the city would be complete without some mention of the natural forces at work. Most of Scotland is blessed with an abundance of rain, and Edinburgh is no different. The city built on Castle Rock receives rain from the North Sea and the Firth of Forth. These two bodies of water also create heavy fogs and high winds. The celebrated writer and Edinburgh native, Robert Louis Stevenson, left a marvelous description of the weather in his affectionate look at his hometown, Edinburgh, published in 1912:

But Edinburgh pays cruelly for her high seat with one of the vilest climates under heaven. She is liable to be beaten upon by all the winds that blow, to be drenched with rain, to be buried in cold sea fogs out of the east, and powdered with the snow as it comes flying southward from the Highland hills. The weather is raw and boisterous in winter, shifty and ungenial in summer and a downright meteorological purgatory in the spring. . . . For all who love shelter and the blessings of the sun, who hate dark weather and perpetual tilting against squalls, there could scarcely be found a more unhomely and harassing place of residence.

Despite the inhospitable climate, Edinburgh's defensibility, and proximity to good farmland and excellent ports, inevitably made it one of Scotland's commercial centers, and therefore a city that needed to grow. However, the citizens' fear of building outside Flodden Wall ensured that expansion was held in check. Therefore, as did American builders in Manhattan centuries later, the clever builders of Edinburgh looked to the sky for the only open space. Because the city was confined to the spinelike ridge left by the glaciers, the foundations of the buildings along the Royal Mile were fragile and the tallest structures could not be more than six or seven stories high. But because the demand for space was so great, every building in Edinburgh was maximized and built to a height of six or seven stories. The buildings were all attached to one another, like tall row houses. Yet, only the front façades were limited to seven stories. Because the land fell so sharply away from the ridge, the rears of these buildings often had an additional three or four basement stories. The basement levels were built right into the sandstone of the ridge. Visitors to San Francisco or Pittsburgh can see similar architecture to this day.

As the population of the city grew, and as Flodden Wall kept all building activity within its interior, additional rows of buildings were constructed behind the first ones. With land so precious, the structures were built right on top of each other. Steep stairs, sloping courtyards, and narrow alleys, called wynds, provided the only paths to these new tenements. The old town maps from the sixteenth and seventeenth centuries look like mazes. High Street remained one of the only wide streets in the city.

The tenements were called "lands," and the way they were inhabited reflected the city's social structure. The ground floor was usually a place of business for a merchant or tradesman. Directly above the ground floor were the owner's personal quarters. Family members probably used one or two floors, depending on the size of the household. The servants and staff lived on the floors above the family quarters. And above the servants, on the top floors, would be the renters—most likely laborers such as textile workers. The lowest classes—the itinerant laborers who could find work only occasionally, the unemployed, the crippled who could not work at all, and the mentally ill—occupied the basement floors.

Though Edinburgh was always picturesque, with many citizens having views of the Firth of Forth and the surrounding hills, the geological constraints made the city severely cramped by James Hutton's time. The smells and the pollution created by the countless chimneys constantly belching smoke gave Edinburgh the disparaging moniker Auld Reekie. Moreover, the overcrowding was exacerbated by yet one other characteristic of the city that was dictated by its natural history: Because the ridge on which it was built prevented Edinburgh from having a plumbing system, an unusual system of waste removal evolved. Edward Burt, a Londoner who visited Edinburgh in 1754, left this vivid account of the "system":

When I first came into the High-Street of that City, I thought I had not seen any thing of the Kind more magnificent; the extreme Height of the Houses, which are, for the most Part, built with Stone, and well sashed; the Breadth and Length of the Street, and (it being dry Weather) a Cleanness made by the high Winds, I was extremely pleased to find every Thing look so unlike the Description of that Town, which had been given me by some of my Countrymen.

Being a Stranger, I was invited to sup at a Tavern. The Cook was too filthy an Object to be described, only another English Gentlemen whispered to me and said, he believed, if the Fellow was to be thrown against the Wall, he would stick to it

We supped very plentifully, and drank good French Claret, and were very merry till the Clock struck Ten, the Hour when every-body is at Liberty, by beat of the City Drum, to throw their filth out of the Windows. Then the Company began to light Pieces of Paper, and throw them upon the Table to smoke the Room, and, as I thought, to mix one bad Smell with another.

Being in my Retreat to pass through a long narrow Wynde or Alley, to my new Lodgings, a Guide was assigned to me, who went before me to prevent my Disgrace, crying out all the Way, with a loud Voice, Hud your Haunde (hold your hand). The opening up of a Sash, or otherwise opening a Window, made me tremble, while behind and before me, at some little Distance, fell the terrible Shower.

Well, I escaped all the Danger, and arrived, not only safe and sound, but sweet and clean, at my new Quarters, but when I was in Bed I was forced to hide my Head between the Sheets, for the Smell of the Filth, thrown out by the Neighbors on the Back-side of the House, came pouring into the Room to such a Degree, I was almost poisoned with the Stench.

In the morning, the streets were cleaned, as much as possible, by work crews that had the nastiest jobs in the city, and the regular rains also helped to freshen up the wynds and courtyards. However, the lowest parts of the city, especially near Flod-den Wall, became highly polluted.

The overcrowding and poor sanitation were certainly problematic for Edinburgh. Yet, the city's unusual layout, which forced all residents to live close to one another, regardless of rank and station, did have a highly positive effect. It required the citizens of Edinburgh to be, if not egalitarian, at least tolerant. To be sure, there was a class structure, with the rich living on the more desirable floors of the lands and on the higher ground, but rich and poor alike had to dodge the "terrible showers" being thrown from the windows above. This spirit of inclusive-ness would later inform the Scottish Enlightenment and, by extension, Hutton's work.

Though there is a great deal of information about Edinburgh in the early eighteenth century, frustratingly few details remain about James Hutton's early life. We do know that he was born on June 3, 1726, to William Hutton, a merchant, and his wife, Sarah Balfour Hutton. William passed away two years after James's birth, leaving Sarah a thirty-one-year-old widow responsible for raising five children on her own. James's older and only brother also died when he was young, leaving James the only male in a household that now included his mother and three sisters. We do not know the birth order of the Hutton children, but only one sister was still alive when Hutton died, so he was probably the next to youngest of the five. There is no evidence that Sarah Hutton ever remarried.

William's integrity was such that his fellow merchants elected him to the office of city treasurer, a position that he held for some time. As treasurer, William had been an active participant in the reinvigoration of a city that had suffered horribly in the aftermath of the Darien Affair, the name historians now give to the wholly private venture that nearly bankrupted the entire country. The affair began in 1698, a decade after the deposing of James II, the last Catholic king of England and Scotland, when the Edinburgh banker William Paterson convinced his fellow Edinburghers to try to colonize a part of Panama, the Isthmus of Darien. Paterson knew that the narrow isthmus was destined to be an important crossroads for world trade, and he planned to build a road across it, linked by ports on each side. This would have been Scotland's first colony. Paterson was a brilliant salesman; by tapping into his countrymen's ambitions, nationalism, and anti-English sentiment, he succeeded in persuading nearly every prominent citizen to contribute to the enterprise. Estimates vary, but it appears that Paterson raised nearly £400,000, approximately one-half of all the wealth that then existed in Scotland. Though successful in Scotland, the attempted settlement in Panama was a disaster. Spain had its own claim to the land, and her armed resistance, coupled with English obstruction and a devastating outbreak of yellow fever, caused the entire scheme to collapse tragically. Over 1,000 Scots died. Two more Scottish expeditions were sent to their doom, the brutality of the Spanish increasing each time. After two years, three expeditions, the loss of five ships, the expenditure of over £200,000, and the loss of over 2,000 Scots lives, Paterson and the Scots finally gave up. The Bank of Scotland, founded in 1695, never recovered and declared bankruptcy at the end of 1704.

The collapse of the Darien venture, and the near bankrupting of Scotland, led directly to the Act of the Union with England in 1707. Though England and Scotland had professed loyalty to one king since 1603, the two countries had remained independent, Scotland retaining its own parliament despite the English government's strong desire to unify. After the debacle of Darien, the English government agreed to pay Scotland's debts; but in return, the leaders of Scotland would have to accept the union of the two countries. The Act of the Union forced Scotland into second-class status behind England, but the nation had no choice. Its diminished standing manifested itself primarily in foreign trade—English merchants quickly dominated the Scottish textile and fish trades. In these difficult years, William Hutton was among the merchants who put Edinburgh back on its feet again, reasserting the quality of Scottish wool, linens, spirits, and paper in the Baltics and the Low Countries. By the year of James's birth, the city of30,000 was once again thriving.

In Edinburgh, another consequence of the Act of the Union was the rise of the Whigs, a group of progressive businessmen and jurists who were eager to eliminate the excesses of anti quated feudal and mercantile laws. William Hutton and his fellow merchants were staunch Whigs: largely Presbyterian, though not usually too devout, and descended from Lowland families having ties to England. The Lowlands were the lands south of Edinburgh and Glasgow that over the centuries had been settled by invading Normans and then English. The Jacobites (followers of James II, the Catholic monarch deposed in 1688) had been the ruling class for centuries, and they were deeply suspicious of the world envisioned by the Whigs. The Jacobites embraced tradition, believed in the divine right of the monarchy to rule, and were mainly Catholic. They sprang primarily from the clans, the Scottish equivalent of feudal landowning families, who dominated life in the Highlands, the region north of Edinburgh and Glasgow that had been settled by the ancient Scottish tribes pushed north by the Normans and English. The rise of the Whigs in Edinburgh was catalyzed by the ascendancy of William and Mary to the thrones of England and Scotland (Mary was James II's daughter, but she was Protestant and not the official heir to the throne). In accepting the crowns, William and Mary agreed to greatly reduced powers, a condition insisted upon by the Whig-dominated parliaments of England and Scotland. The Whigs' consolidation of power was sealed by the Act of Union, which eliminated the Scottish parliament in Edinburgh, the last vestige ofJacobite influence.

Considering the properties that James Hutton inherited, it appears that William Hutton left his widow and children fairly well off. Certainly, the Hutton children never lacked for food or comfort. In all likelihood, William Hutton left his family in possession of land, and it was probably in the part of Edinburgh known as Lawnmarket, where the wealthiest citizens lived. It was located just below the castle at the highest part of the city, where High Street was at its widest; the view of the Firth of Forth and the surrounding hills was spectacular. St. Giles, the cathedral from which John Knox led the Presbyterian Reformation a century and a half before James Hutton's birth, was a little farther down High Street. The open courtyard in front of the church would have been teaming with activity every day as merchants concluded deals and solicitors and judges, their offices nearby, discussed the issues of the day.

After the death of William, Sarah probably rented the ground and perhaps the second floor to another merchant, or to a professional such as a solicitor. The Hutton family of five likely lived on the third floor. Most of the eighteenth-century lands are standing today, so we have some idea what the Hutton home looked like. The flat was most likely very comfortable and spacious, with enough rooms to allow for privacy for all five members of the Hutton family. The ceilings were quite high, perhaps 12 feet, and the front parlor probably had two or three windows looking onto High Street. The rear rooms may have had windows overlooking the courtyard in the back. The kitchen was large and the warmest room in the house; but there were fireplaces in nearly every room, so they would all have been well heated. Because of the active trade with the continent, Dutch tiles and cookery were common.

Young James was sent to the High School of Edinburgh, located near the bottom of High Street, starting in 1736, when he was ten years old. He received the standard instruction of the day, which consisted of courses in Latin, Greek, and mathematics. Then, in November 1740, he entered the University of Edinburgh. Hutton was only fourteen, but that was the normal age to begin college at the time. David Hume, the philosopher, who was fifteen years older than Hutton, was only eleven when he started at the same university.

By 1740, the University of Edinburgh was beginning its ascent to greatness. Founded in 1583 as a divinity school during the early stages of the Presbyterian Reformation, it consisted of a series of rather decrepit buildings separated by three courtyards. Student dormitories surrounded one courtyard (though most students lived elsewhere in town). The library and administrative offices enclosed the next one, and the largest courtyard fronted the classroom buildings and faculty offices. Though in need of repair, the University of Edinburgh had an outstanding faculty, making it probably the best of Scotland's four universities (Aberdeen, Glasgow, and St. Andrews were the others).

Hutton was one of approximately 500 students at the University of Edinburgh in the 1740s. The faculty was tiny, maybe a dozen professors in all. Many fields of study that students now take for granted simply did not exist. There was no school of engineering, no economics department, no chemistry department. There was a rigid curriculum, though. The first year was devoted to Latin, the second year to Greek. Logic and metaphysics, along with natural philosophy, were the focus of the third and final year. Other than these four courses, there was but a handful of electives, which included ethics, mathematics, and history. Students paid the lecturer a fee at the beginning of each course. Though professors were paid a base salary by the university, they depended on these payments from the students to make ends meet. Thus, a professor had a strong incentive to develop a reputation as a fine speaker so that he could fill the lecture hall, and then his pockets.

It was at the University of Edinburgh that the teenage Hutton was first introduced to the ideas of Isaac Newton, which would prove enormously important to his later work. A key tenet of Hutton's theory of the earth was that it behaved like a machine, obeying constantly acting natural laws. This concept was drawn directly from Newton's natural laws of universal gravity and celestial mechanics. Hutton was first exposed to Newton in the natural philosophy course taught by Colin Maclaurin (1698-1746), one of the leading scholars on the faculty. As a young man, Maclaurin had worked with the aging Newton in London; Sir Isaac was so impressed with Maclaurin that in 1725 he wrote two letters to the university on Maclaurin's behalf, one a letter of recommendation, the other an offer to pay part of his salary if necessary. Maclaurin, a prolific writer of books and a popular teacher, viewed himself as an apostle of Newton, and he infused his natural philosophy lectures with heavy doses of Newtonian science.

Hutton was fortunate to encounter Maclaurin during his peak years, when he was particularly focused on bringing Newton's ideas to a wide audience. His greatest work, Treatise of Fluxions (fluxion was the term Newton used for calculus) was published in 1742, when Hutton was a student. This was a tech nical work that bolstered various propositions from the Principia (1687), Newton's most famous book. At the time, Maclau-rin was also working on a popular book that was published in 1748, two years after his premature death. Published under the title Sir Isaac Newton's Philosophical Discoveries, it is still considered one of the clearest explications of Newton's ideas—ideas that would profoundly influence all the members of the Scottish Enlightenment.

Newton made at least four seminal discoveries, described collectively as the Newtonian Revolution, a term used even during Newton's lifetime. The first was in mathematics. Newton invented calculus (Leibnitz independently made the same discovery, and the two share joint credit for this still essential tool for scientific inquiry). He also discovered the properties of color, which led to his invention of the reflecting telescope, still in active use to this day. Sir Isaac's third great work was the mathematical synthesis of the science of mechanics, in which he defined mass, motion, inertia, and momentum. The final and most famous was his discovery of universal gravitation, to this day one of the most important scientific revelations of all time. Building on the work of Copernicus, Galileo, Brahe, Kepler, and Descartes, Newton explained how the planets, their moons, and comets maintained their orbits around the sun. Universal gravitation also explained the mystery of tides, and how objects of different weights fall at the same speed (one of Galileo's important findings).

The Principle of Universal Gravitation was the first natural law to be identified: It proved that any object with mass exerts a gravitational force, always, and that the planets maintain their orbits at all times. Another important aspect of Newton's work was his insistence on using the scientific method: building theories by accurate observation, then verifying them through rigorous yet repeatable experiments. His only nontechnical book, Opticks (1704), stressed the need for all scientists to follow these guidelines.

Colin Maclaurin surveyed all of the above for James Hutton and the rest of his classmates, hoping to imbue them with the same excitement that he felt for Newton's accomplishments. But Maclaurin had one other major effect on Hutton. Maclaurin was a deist, one who believes in a creator God, a God who designed and built the universe and then set His creation into motion (but does not interfere with the day-to-day workings of the system or the actions of people). The following passage is from Maclaurin's 1748 book:

The plain argument for the existence of the Deity, obvious to all and carrying irresistible conviction with it, is from the evident contrivance and fitness of things for one another, which we meet with throughout all parts of the universe. There is no need of nice or subtle reasonings in this matter: a manifest contrivance immediately suggests a contriver... . No person, for example, that knows the principles of optics and the structure of the eye, can believe that it was formed without skill in that science. .. . The admirable and beautiful structure of things for final causes, exalt our idea of the Contriver: the unity of design shows him to be One. The great motions in the system, performed with the same facility as the least, suggest his Almighty Power, which give motion to the earth and the celestial bodies, with equal ease to the minutest particles.

James Hutton would later use similar language in his own written works. There seems little doubt that Hutton shared Maclaurin's religious perspective. Whether Maclaurin was the only source of this belief system is not known, but it seems likely that he had a significant impact.

John Stevenson was equally influential, albeit less directly. Stevenson was a logician and he taught the third-year metaphysics course. In one of his class sessions, Stevenson alluded to the fact that it takes two acids to dissolve gold, each acid usually being powerful enough on its own to dissolve other metals. The point of the metaphor was lost on young Hutton, but the chemical process described was not. Intrigued by the idea, Hutton went in search of a book on chemistry (a course did not exist at that time), and found the only general reference work available: Lexicon Technicum. The chemistry described in this volume was simple, but it nevertheless attracted Hutton. From this point on, chemistry would be a singular love of Hutton's, and it would be a key tool in his later work.

Hutton graduated from the university in the spring of 1743. If he distinguished himself academically during his three years there, no record of it exists. It appears that Hutton passed his years there rather uneventfully, which is what one would expect given his young age—even the precocious David Hume graduated from the University of Edinburgh at the age of fourteen without any of his professors noticing his presence among them.

Shortly after graduation, Hutton began an apprenticeship in a solicitor's office, a job most likely secured through his mother's connections. However, sitting in a dark back room copying wills and contracts by candlelight apparently did not offer Hutton enough stimulation; John Playfair relates that "the young man's propensity to study continued, and he was often found amusing himself and his fellow apprentices with chemical experiments, when he should have been copying papers, or studying the forms of legal proceedings." Hutton's mentor quickly realized that the law was not the career for James, and he "advised him to think of some employment better suited to his turn of mind." By the autumn of 1744, Hutton was back at the university, this time enrolled as a medical student. Since medicine was the only profession of the day in which chemistry played a major role, medical school was the obvious next choice for the young man.

At this time, there is nothing to suggest that James Hutton had any interest in what would soon preoccupy him for the rest of his life: the earth. However, an unusual event occurred in the summer of 1744 that may have had some effect on him. One day, a particularly violent storm caused a landslide near the top of Arthur's Seat, which is the large mound that shadows the city near Holyrood Palace. There was no devastation or loss of life because no one lived on this formation, but the landslide created a hollow, which today is called Gutted Haddie. Exposing a large piece of the hard volcanic rock, the landslide demonstrated, in a most profound way, the power of erosion. It is almost certain that Hutton, being of curious mind, was one of the many residents of Edinburgh who went to observe the damage.

Three key features mark James Hutton's later scientific work: his application of Newtonian natural laws to the study of the earth, his innovative use of chemistry, and his recognition of the dynamics of erosion. By the summer of 1745, Hutton had been exposed to all three. Maclaurin's natural philosophy course was one of the best introductions to Newtonian science available anywhere in Europe. Hutton was now studying medicine, giving him the most intense chemistry training available. And, too, he was living in Edinburgh, whose high winds, frequent rains, and eroding mountains, monuments, and tombstones offered daily instruction in the forces of nature.

In August 1745, the nineteen-year-old James Hutton had completed his first year of medical school and was idling away the summer, waiting for his courses to resume in the fall. They would not begin on time. The grandson of James II, Charles Stuart, was about to lead a small army of clansmen from out of the western Highlands in a rebellion that no one could have foreseen. The uprising would do more than interrupt Hutton's education; it would deeply affect every citizen of Edinburgh and frighten the ruling Whig regime into recognizing the frailty of all they had gained for themselves and the city since the Act of Union in 1707. New forces would align to shape the future of Edinburgh, and with it, James Hutton's career.

This page intentionally left blank

Was this article helpful?

0 0

Post a comment