Going to work for NASA

Jupsat Pro Astronomy Software

Secrets of the Deep Sky

Get Instant Access

I would be a radio astronomer. Pat Thaddeus in New York City, at NASA's Goddard Institute for Space Studies, had just built a new telescope on the roof of the physics building at Columbia University. I wanted out of cosmology. I wanted to do something where it didn't take years to build the apparatus and then see it fail. Pat got me started observing with a radio telescope and making some computer calculations, and I even made a little progress. However, the fates had something else in mind: NASA. NASA had sent around a team to Berkeley to see what their Space Sciences Laboratory there was doing, and I had told them about our balloon project. They wanted to know why we weren't doing it in space. I thought, ''Who, me, I'm just a kid?''

In summer of 1974, NASA issued a nationwide call for satellite proposals. Pat said we should all think of ideas. There was only one thing I knew anything about, my ill-fated thesis experiment. By now the emotional sore spots had worn off and I thought maybe it was worth doing in space. It could be done thousands of times better than we could imagine doing even with a balloon. Pat said I should call his friends and assemble a team, so I did. Six of us wrote a very thin proposal for the ''Cosmological Background Radiation Satellite,'' and sent it in. We wanted to build four instruments, three of them inside a tank of liquid helium, and put them in space.

We had three objectives. First, we would measure the spectrum of the cosmic background radiation a thousand times better than we had done with my thesis experiment, and compare it directly with a nearly perfect blackbody. A blackbody is an object that absorbs all radiation that falls on it, and it is also a perfect radiator whose brightness follows a simple formula. If the Big Bang theory is right, the background should match a blackbody at a particular temperature, which we would measure. Second, we would look to see if the microwave radiation is equally bright in all directions, as it should be if it comes from the Big

Bang, and then we would look for little hot and cold spots that might be the seeds for galaxies and clusters of galaxies. Third, we would look for the light from the first galaxies. Maybe the early universe is filled with galaxies that are too far away for any telescope to see them, but we might still find the hazy glow.

I drew a picture and a draftsman tidied it up (this was before computers could draw). In retrospect it amazes me that so much could come from such a little booklet. Now, in today's intensely competitive environment, such a short proposal would have no chance, but in those days most proposals were about as thin as ours. I have to think we had a guardian angel, and it was true, we did: Nancy Boggess was at NASA Headquarters, and she was a strong advocate of the new field of space infrared astronomy. Also, major scientific advisory committees had told NASA that our subject was very important.

In reality, though, our fate was to compete with over a hundred other proposals. Two other groups had put in ideas related to ours, one from Berkeley, and one from the Jet Propulsion Laboratory in Pasadena, California. At first, NASA thought one of our instruments (the one most like my thesis experiment) might go along with another mission that wanted a helium cryostat, but that turned out to be much too difficult. Instead, NASA formed a new team from members of our group and the Berkeley and JPL teams. We would figure out what to do now. In 1976, I took a job at NASA's main science laboratory, Goddard Space Flight Center in Greenbelt, Maryland, in hopes that our new project might become real. If the project were selected, I would be its lead NASA scientist, and I would be in charge of one of the instruments. Suddenly I was the center of a whirlwind. Be careful what you ask for, you might get it! I was 30 but I still felt like a kid, a bit awkward with words, and when I had to give a speech for the first time I got cold sweat running down my back. Maybe it was a good thing that I didn't know to be afraid of what I was getting into.

Now we had a chance. NASA sent the twelve winners of the first round of competition a little money to support writing a more complete proposal. We sent our bit out to our team members and to Ball Brothers in Boulder. Ball Brothers spent a lot of their own money too, in hopes of winning some contracts when the competition was over. We wrote a very thick proposal this time, two volumes each an inch thick. It demonstrated we could do this mission within the allowed budget, and it would measure the Big Bang radiation and look for the radiation from the first galaxies. We even decided on a new name, the ''Cosmic Background Explorer,'' or COBE. Review committees smiled upon it. NASA gets external advice from scientists around the country, and they apparently felt that the obvious difficulty of the work was still acceptable because of the tremendous importance of the results we might get.

Was this article helpful?

0 0
Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook

Post a comment