Mars Outpost and Surface Base Concepts

For automated Mars missions, the spacecraft and robotic surface rovers generally will be small and self-contained. For human expeditions to the surface of the Red Planet, however, two major requirements must be satisfied: life support (habitation) and surface transportation (mobility). Habitats, power supplies, and life-support systems will tend to be more complex in a permanent Martian surface base that must sustain human beings for years at a time. Surface mobility systems will also grow in complexity and sophistication as early Martian explorers and settlers travel tens to hundreds of miles (km) from their base camp. At a relatively early time in any Martian surface base program, the use of Martian resources to support the base must be tested vigorously and then quickly integrated in the development of an eventually self-sustaining surface infrastructure.

In one candidate scenario, the initial Martian habitats will resemble standardized lunar base (or space station) pressurized modules and would be transported from cislunar space to Mars in prefabricated condition by interplanetary nuclear-electric propulsion (NEP) cargo ships. These modules would then be configured and connected as needed on the surface of Mars and covered with about 3 feet (1 m) or so of Martian soil for protection against the lethal effects of solar-flare radiation or continuous exposure to cosmic rays on the planet's surface. Unlike Earth's atmosphere, the very thin Martian atmosphere does not shield very well against ionizing radiations from space.

Another midcentury Mars base concept involves an elaborate complex of habitation modules, power modules, central base work facilities, a greenhouse, a launch and landing complex, and even a robotic Mars airplane. The greenhouse on Mars would provide astronauts with some much-needed dietary variety. As an early Mars outpost grows into a

This artist's rendering shows the major components of one possible Mars outpost that could support up to seven astronauts while they explored the surface of the Red Planet. The main components are a habitat module, pressurized rover dock/ equipment lock, airlocks, and a 52.5-foot- (16-m-) diameter, erectable (inflatable) habitat. Also appearing in the picture are a Mars balloon, an unpressurized rover, a storage work area, a geophysical experiment area, and a local area antenna. In the scenario depicted, many of the elements of this Mars outpost were derived from an earlier lunar test bed facility. (NASA/JSC; artist, Mark Dowman of John Frassanito & Associates)

This artist's rendering shows a human-crewed nuclear thermal rocket-powered interplanetary cargo transfer vehicle that is on the way to the Jovian system and is being refueled in orbit around Mars near the Red Planet's moon Phobos. As the human race expands its presence out into the solar system, permanent settlements on Mars and refueling stations on its two moons could play a major "frontier town" role in the 22nd century. (NASA: artist; Pat Rawlings, 1996)

This artist's rendering shows a human-crewed nuclear thermal rocket-powered interplanetary cargo transfer vehicle that is on the way to the Jovian system and is being refueled in orbit around Mars near the Red Planet's moon Phobos. As the human race expands its presence out into the solar system, permanent settlements on Mars and refueling stations on its two moons could play a major "frontier town" role in the 22nd century. (NASA: artist; Pat Rawlings, 1996)

sufficiently large permanent human settlement, a system of greenhouses will be necessary to establish food self-sufficiency. In time, food grown at the Mars base could be used to supply human space-exploration missions that depart the Red Planet and travel into the asteroid belt and beyond.

Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook


Post a comment