Xwo

Figure 8.14 A schematic phylogenetic tree that can be used to date divergence events under the assumption of a constant rate of divergence over time or a molecular clock. T1 is the time in the past when species C and the ancestor of species A and B diverged. T2 is the time in the past when species A and B diverged. If either T1 or T2 are known, the rate of molecular evolution per unit of time can be estimated from observed sequence divergences. This rate of divergence can then be used to estimate the unknown amount of time that elapsed during other divergences.

Figure 8.14 A schematic phylogenetic tree that can be used to date divergence events under the assumption of a constant rate of divergence over time or a molecular clock. T1 is the time in the past when species C and the ancestor of species A and B diverged. T2 is the time in the past when species A and B diverged. If either T1 or T2 are known, the rate of molecular evolution per unit of time can be estimated from observed sequence divergences. This rate of divergence can then be used to estimate the unknown amount of time that elapsed during other divergences.

and C (KBC) and the time of divergence T1. This rate can then be used to solve for the unknown divergence time T2:

0 0

Post a comment