Info

0 1 2 Number of A alleles in each population

Figure 3.9 The expected frequencies of populations with zero, one, or two A alleles over five generations genetic drift. Initially, all populations have one A and one a allele (p = q = 0.5). Each generation two gametes are sampled from each population under the Wright-Fisher model to found a new population. This distribution assumes a very large number of independent replicate populations.

0 1 2 Number of A alleles in each population

Figure 3.9 The expected frequencies of populations with zero, one, or two A alleles over five generations genetic drift. Initially, all populations have one A and one a allele (p = q = 0.5). Each generation two gametes are sampled from each population under the Wright-Fisher model to found a new population. This distribution assumes a very large number of independent replicate populations.

However, the transition probabilities from each possible allelic state to each possible allelic state are still determined with the binomial formula in equation 3.13. To obtain the proportion of populations that transition from one state to any state a generation later, the binomial transition probability is multiplied by the proportion of populations in a given allelic state. Using one of the transitions in Fig. 3.10 as an example, the chance that a single population with one A allele at t = 1 transitions to the same state of one A allele is

v4y v4y

0 0

Post a comment