Info

V/11/22 V(0.46)(0.52) which is used to compute the genetic distance as

When two subpopulations have identical allele frequencies /11 and /22 are equal, I is then one and the natural logarithm of one is zero, giving a genetic distance of zero. D has no upper limit. Although this genetic distance can be calculated for any pair of populations, D for completely isolated populations where divergence is due exclusively to mutation is expected to increase linearly with time under the infinite alleles model. This expectation relies on mutation not causing any homoplasy so that alleles

Table 5.4 Hypothetical allele frequencies in two subpopulations used to compute the standard genetic distance, D. This example assumes three alleles at one locus, but loci with any number of alleles can be used. D for multiple loci uses the averages of J11, J22, and J12 for all loci to compute the genetic identity I.

Table 5.4 Hypothetical allele frequencies in two subpopulations used to compute the standard genetic distance, D. This example assumes three alleles at one locus, but loci with any number of alleles can be used. D for multiple loci uses the averages of J11, J22, and J12 for all loci to compute the genetic identity I.

Allele

Subpopulation 1

0 0

Post a comment