W

An additional simplification is possible if we assume that the fitness of genotypes with the same number

Table 7.3 Expected frequencies of gametes under viability selection for two diallelic loci in a randomly mating population with a recombination rate of r between the loci. The expected gamete frequencies assume that the same gamete coming from either parent will have the same fitness in a progeny genotype (e.g. w12 = w21). Eight genotypes have non-recombinant and recombinant gametes that are identical and so do not require a term for the recombination rate. Two genotypes produce novel recombinant gametes, requiring inclusion of the recombination rate to predict gamete frequencies. Summing down each column of the table gives the total frequency of each gamete in the next generation due to mating and recombination.

Frequency of gametes in next generation

Table 7.3 Expected frequencies of gametes under viability selection for two diallelic loci in a randomly mating population with a recombination rate of r between the loci. The expected gamete frequencies assume that the same gamete coming from either parent will have the same fitness in a progeny genotype (e.g. w12 = w21). Eight genotypes have non-recombinant and recombinant gametes that are identical and so do not require a term for the recombination rate. Two genotypes produce novel recombinant gametes, requiring inclusion of the recombination rate to predict gamete frequencies. Summing down each column of the table gives the total frequency of each gamete in the next generation due to mating and recombination.

Frequency of gametes in next generation

Genotype

Fitness

Total frequency

0 0

Post a comment