Chapter Five Getting Ahead

A wonderfully comprehensive and detailed treatment of the details of skull structure, development, and evolution is found in a three-volume set: The Skull, James Hanken and Brian Hall, eds. (Chicago: University of Chicago Press, 1993). This is a multi-author update of one of the classic volumes on head development and structure: G. R. de Beer, The Development of the Vertebrate Skull (Oxford, Eng.: Oxford University Press, 1937).

Details of head development and structure in humans can be found in texts on human anatomy and embryology. For embryology, see K. Moore and T.V.N. Persaud, The Developing Human, 7th ed. (Philadelphia: Elsevier, 2006). The companion anatomy text is K. Moore and A. F. Dalley, Clinically Oriented Anatomy (Philadelphia: Lippincott Williams & Wilkins, 2006).

Francis Maitland Balfour's seminal work is encapsulated in Balfour, F. M. (1874) A preliminary account of the development of the elasmobranch fishes, Q. J. Microsc. Sci. 14:323-364; F. M. Balfour, A Monograph on the Development of Elasmobranch Fishes, 4 vols. (London: Macmillan & Co., 1878); F. M. Balfour, A Treatise on Comparative Embryology, 2 vols. (London: Macmillan & Co., 1880-81); M. Foster and A. Sedgwick, The Works of Francis Maitland Balfour, with an introductory biographical notice by Michael Foster, 4 vols. (London: Macmillan & Co., 1885). A successor at Oxford, Edwin Goodrich, produced one of the classics of comparative anatomy, Studies on the Structure and Development of Vertebrates (London: Macmillan, 1930).

Balfour, Oken, Goethe, Huxley, and others were addressing the problem known as head segmentation. Just as the vertebrae differ in a regular progression from front to back, so the head has a segmental pattern. A selection of classic and recent resources (all with good bibliographies) to pursue this field further: Olsson, L., Ericsson, R., Cerny, R. (2005) Vertebrate head development: Segmentation, novelties, and homology, Theory in Biosciences 124:145-163; Jollie, M. (1977) Segmentation of the vertebrate head, American Zoologist 17:323-333; Graham, A. (2001) The development and evolution of the pharyngeal arches, Journal of Anatomy 199:133-141.

A recent overview of the genetic basis of gill arch formation is found in Kuratani, S. (2004) Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty, Journal of Anatomy 205:335-347. Examples of the experimental manipulation of one gill arch into another, using genetic technologies, include Baltzinger, M., Ori, M., Pasqualetti, M., Nardi, I., Riji, F. (2005) Hoxa 2 knockdown in Xenopus results in hyoid to mandibular homeosis, Developmental Dynamics 234:858-867; Depew, M., Lufkin, T., Rubenstein, J. (2002) Specification of jaw subdivisions by Dlx genes, Science 298:381-385.

A comprehensive, well-illustrated, and informative resource for early fossil records of skulls, heads, and primitive fish is reviewed in P. Janvier, Early Vertebrates (Oxford, Eng.: Oxford University Press, 1996). The paper describing Haikouella, the 530-million-year-old worm with gills, is Chen, J.-Y., Huang, D. Y., and Li, C. W. (1999) An early Cambrian craniate-like chordate, Nature 402:518-522.

0 0

Post a comment