Tissues

Animal eyes come in two flavors; one is seen in invertebrates, the other in vertebrates, such as fish and humans. The central idea is that there are two different ways of increasing the light-gathering surface area in eye tissue. Invertebrates, such as flies and worms, accomplish this by having numerous folds in the tissue, while our lineage expands the surface area by having lots of little projections extending from the tissue like tiny bristles. A host of other differences also relate to these different kinds of designs. Lacking fossils at the relevant phase of history, it would seem that we would never be able to bridge the differences between our eyes and those of invertebrates. That is, until 2001, when Detlev Arendt thought to study the eyes of a very primitive little worm.

Polychaetes are among the most primitive living worms known. They have a very simple segmented body plan, and they also have two kinds of light-sensing organs: an eye and, buried under their skin, a part of their nervous system that is specialized to pick up light. Arendt took these worms apart both physically and genetically. Knowledge of the gene sequence of our opsin genes and the structure of our light-gathering neurons gave Arendt the tools to study how polychaetes are made. He found that they had elements of both kinds of animal photoreceptors. The normal "eye" was made up of neurons and opsins like the eye of any invertebrate. The tiny photoreceptors under the skin were another matter altogether. They had "vertebrate" opsins and cellular structure even with the little bristle-like projections, but in primitive form Arendt had found a living bridge, an animal with both kinds of eyes, one of which—our kind—existed in a very primitive form When we look to primitive invertebrates, we find that the different kinds of animal eyes share common parts.

Was this article helpful?

0 0

Post a comment