Determining the Hazard Potential of an NEO

When an NEO is first discovered, its orbit and size are uncertain. If sufficient observations are made during its discovery apparition, a fairly good orbit can be computed. In practice, however, few orbits are reliably determined during the first apparition, and later observations of the object are required to learn how its position has changed in the interim. Observations to determine its size are rarely made (perhaps several in 100 are so observed), because they require specialized techniques such as radar or thermal infrared radiometry; rather, the size of an NEO is estimated from its brightness. Sizes estimated this way are uncertain by about a factor of 2—that is, an object reported as being 1 km (0.6 mile) in diameter could have a diameter between 0.5 and 2 km (0.3 and 1.2 miles).

In most cases, sufficient observation of an object will establish that the chances of its colliding with Earth are negligible. In some cases, however, there is no opportunity for additional observation. This happens, for example, when the object is small and discovered while passing very close to Earth; it quickly becomes too faint to observe further. Even a larger and more distant object can be lost because of poor weather (a factor taken into account in choosing observing sites for search programs). Without the observations needed to compute a reliable orbit, prediction of the object's future close approaches to Earth is highly uncertain.

When computations indicate that a NEO estimated to be larger than about 200 metres (650 feet) could strike Earth during the next century or two, the object is called a potentially hazardous asteroid (PHA). As of 2009 there were more than 1,000 identified PHAs. Observations of PHAs are continued until their orbits are refined to the point where their future positions can be reliably predicted.

While an object remains on the PHA list, its hazard potential is described by the Torino Impact Hazard Scale, an indicator named after the city of Turin (Italian: Torino), Italy, where it was presented at an international NEO conference in 1999. The purpose of the scale is to quantify the level of public concern warranted. The scale's values, which are integers between 0 and 10, are based on both an object's collision probability and its estimated kinetic energy. The value for a given object can change as probability and energy estimates are refined by additional observations.

On the Torino scale, a value of 0 indicates that the likelihood of a collision is zero or well below the chance that a random object of the same size will strike Earth within the next few decades. This designation also applies to any small object that, should it collide, is unlikely to reach Earth's surface intact. A value of 10 indicates that a collision is certain to occur and is capable of causing a global climatic catastrophe; such events occur on timescales of 100,000 years or longer (the mass extinction event at the end of the Cretaceous period falls here).

Intermediate values categorize impacts according to various levels of probability and destructiveness. A Torino scale value is always reported together with the predicted date of the close encounter to convey further the level of urgency that is warranted. Since the implementation of the Torino scale, there has been only one known NEO with a final value greater than 0. For asteroid 2007 VK184, there is a 1 in 3,030 chance that it will strike Earth on June 3, 2048; this asteroid ranks as a 1 on the Torino scale. Other objects often have received higher initial values, but these values have proved fictitious once the needed additional observations have been made and more accurate orbits have been calculated.

Was this article helpful?

0 0
Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook

Post a comment