Orbital and Rotational Effects

Mercury's orbit is the most inclined of the planets, tilting about 7° from the ecliptic, the plane defined by the orbit of Earth around the Sun; it is also the most eccentric, or elongated planetary orbit. As a result of the elongated orbit, the Sun appears more than twice as bright in Mercury's sky when the planet is closest to the Sun (at perihelion), at 46 million km (29 million miles), than when it is farthest from the Sun (at aphelion), at nearly 70 million km (43 million miles). The planet's rotation period of 58.6 Earth days with respect to the stars—i.e., the length of its sidereal day—causes the Sun to drift slowly westward in Mercury's sky. Because Mercury is also orbiting the Sun, its rotation and revolution periods combine such that the Sun takes three Mercurian sidereal days, or 176 Earth days, to make a full circuit—the length of its solar day.

As described by Kepler's laws of planetary motion, Mercury travels around the Sun so swiftly near perihelion that the Sun appears to reverse course in Mercury's sky, briefly moving eastward before resuming its westerly advance. The two locations on Mercury's equator where this oscillation takes place at noon are called hot poles. As the overhead Sun lingers there, heating them preferentially, surface temperatures can exceed 700 K (430 °C, or 800 °F). The two equatorial locations 90° from the hot poles, called warm poles, never get nearly as hot. From the perspective of the warm poles, the Sun is already low on the horizon and about to set when it grows the brightest and performs its brief course reversal. Near the north and south rotational poles of Mercury, ground temperatures are even colder, below

200 K (-70 °C, or -100 °F), when lit by grazing sunlight. Surface temperatures drop to about 90 K (-180 °C, or -300 °F) during Mercury's long nights before sunrise.

Mercury's temperature range is the most extreme of the solar system's four inner, terrestrial planets, but the planet's nightside would be even colder if Mercury kept one face perpetually toward the Sun and the other in perpetual darkness. Until Earth-based radar observations proved otherwise in the 1960s, astronomers had long believed that to be the case, which would follow if Mercury's rotation were synchronous—that is, if its rotation period were the same as its 88-day revolution period. Telescopic observers, limited to viewing Mercury periodically under conditions dictated by Mercury's angular distance from the Sun, had been misled into concluding that their seeing the same barely distinguishable features on Mercury's surface on each viewing occasion indicated a synchronous rotation. The radar studies revealed that the planet's 58.6-day rotation period is not only different from its orbital period but also exactly two-thirds of it.

Mercury's orbital eccentricity and the strong solar tides—deformations raised in the body of the planet by the Sun's gravitational attraction—apparently explain why the planet rotates three times for every two times that it orbits the Sun. Mercury presumably had spun faster when it was forming, but it was slowed by tidal forces. Instead of slowing to a state of synchronous rotation, as has happened to many planetary satellites, including

Earth's Moon, Mercury became trapped at the 58.6-day rotation rate. At this rate the Sun tugs repeatedly and especially strongly on the tidally induced bulges in Mercury's crust at the hot poles. The chances of trapping the spin at the 58.6-day period were greatly enhanced by tidal friction between the solid mantle and molten core of the young planet.

Was this article helpful?

0 0
Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook


Post a comment