Solar Terrestrial Effects

Besides providing light and heat, the Sun affects Earth through its ultraviolet radiation, the steady stream of the solar wind, and the particle storms of great flares. The near-ultraviolet radiation from the Sun produces the ozone layer, which in turn shields the planet from such radiation. The soft (long-wavelength) X-rays from the solar corona produce those layers of the ionosphere that make short-wave radio communication possible. When solar activity increases, the soft X-ray emission from the corona (slowly varying) and flares (impulsive) increases, producing a better reflecting layer but eventually increasing ionospheric density until radio waves are absorbed and short-wave communications are hampered. The harder (shorter wavelength) X-ray pulses from flares ionize the lowest ionospheric layer (D-layer), producing radio fade-outs. Earth's rotating magnetic field is strong enough to block the solar wind, forming the magnetosphere, around which the solar particles and fields flow. On the side opposite to the Sun, the field lines stretch out in a structure called the magnetotail. When shocks arrive in the solar wind, a short, sharp increase in the field of Earth is produced. When the interplanetary field switches to a direction opposite Earth's field, or when big clouds of particles enter it, the magnetic fields in the magnetotail reconnect and energy is released, producing the aurora borealis (northern lights). Each time a big coronal hole faces Earth, the solar wind is fast, and a geomagnetic disturbance occurs. This produces a 27-day pattern of storms that is especially prominent at sunspot minimum. Big flares and other eruptions produce coronal mass ejections, clouds of energetic particles that form a ring current around the magnetosphere, which produces sharp fluctuations in Earth's field, called geomagnetic storms. These phenomena disturb radio communication and create voltage surges in long-distance transmission lines and other long conductors.

Perhaps the most intriguing of all terrestrial effects are the possible effects of the Sun on the climate of Earth. The Maunder minimum seems well established, but there are few other clear effects. Yet most scientists believe an important tie exists, masked by a number of other variations.

Because charged particles follow magnetic fields, corpuscular radiation is not observed from all big flares but only from those favourably situated in the Sun's western hemisphere. The solar rotation makes the lines of force from the western side of the Sun (as seen from Earth) lead back to Earth, guiding the flare particles there. These particles are mostly protons because hydrogen is the dominant constituent of the Sun. Many of the particles are trapped in a great shock front that blows out from the Sun at 1,000 km/sec (600 miles/sec). The flux of low-energy particles in big flares is so intense that it endangers the lives of astronauts outside the terrestrial magnetic field.

The magnetic effects of solar flares also cause an occasional decrease, the Forbush effect, in the intensity of cosmic rays as observed on Earth. The effect was discovered in 1937 by the American physicist Scott E. Forbush. Its cause became clearer in 1960, when, while the unmanned U.S. space probe Pioneer 5 was in flight some 5 million km (3 million miles) from Earth, a solar flare occurred, followed by an observation on Earth of the Forbush effect. Data from the probe indicated that the cause of the Forbush effect is a thin, hot plasma (of highly ionized gas) emitted by the Sun and carrying with it a tongue or lobe of the Sun's magnetic field as far as Earth; this magnetic field tends to deflect away from Earth the electrically charged particles that make up primary cosmic rays.

Was this article helpful?

0 0
Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook

Post a comment