Rheology or How Solids Can Flow

IRheology is the study of how materials deform, and the word is also used to describe the behavior of a specific material, as in "the rheology of ice on Ganymede." Both ice and rock, though they are solids, behave like liquids over long periods of time when they are warm or under pressure. They can both flow without melting, following the same laws of motion that govern fluid flow of liquids or gases, though the timescale is much longer. The key to solid flow is viscosity, the material's resistance to flowing.

Water has a very low viscosity: It takes no time at all to flow under the pull of gravity, as it does in sinks and streams and so on. Air has lower viscosity still. The viscosities of honey and molasses are higher. The higher the viscosity, the slower the flow. Obviously, the viscosities of ice and rock are much higher than those of water and molasses, and so it takes these materials far longer to flow. The viscosity of water at room temperature is about 0.001 Pas (pascal seconds), and the viscosity of honey is about 1,900 Pas. By comparison, the viscosity of window glass at room temperature is about 1027 Pas, the viscosity of warm rocks in the Earth's upper mantle is about 1019 Pas.

The viscosity of fluids can be measured easily in a laboratory. The liquid being measured is put in a container, and a plate is placed on its surface. The liquid sticks to the bottom of the plate, and when the plate is moved, the liquid is sheared (pulled to the side). Viscosity is literally the relationship between shear stress a and the rate of deformation e. Shear stress is pressure in the plane of a surface of the material, like pulling a spatula across the top brownie batter.

Was this article helpful?

0 0

Post a comment