The Interaction of Genes and Culture Lactose Tolerance

While people were shaping the genetics of domesticated plants and animals by altering various features of their environment, a curious thing was happening to people themselves. Their genetics too were changing as they adapted to the new environment of settled societies.

The warriors and mighty hunters who left the most children in hunter-gatherer societies may have lost their advantage in settled societies. The ability to support many children would have passed to those who excelled at the new occupations of farmer, priest, clerk or administrator. After many generations, and maybe not so many if the selection pressure was intense, people in settled communities may have developed a distinct suite of behaviors that set them apart from their hunter-gatherer forebears. This conjecture cannot yet be addressed, because the genes that underlie human behavior are still for the most part unknown. But the ease with which the human genome responds to cultural changes in society has come to light from a physiological adaptation, the unusual ability to continue to digest lactose in

adulthood, otherwise known as lactose tolerance._

Though cattle were first domesticated in the Near East, Europe became a center of cattle breeding during one of its first farming cultures, known from its pottery as the Funnel Beaker culture. The culture, which lasted from 6,000 to 5,000 years ago, was located in north-central Europe in the region that now includes the Netherlands, northern Germany, Denmark and southern Norway. It has left a lasting mark on the genetics of both the cattle and human populations of the region. A team of European researchers led by Albano Beja-Pereira recently studied genes that encode the 6 most important milk proteins in 70 breeds of European cattle. From samples taken from 20,000 cattle, they drew up a map showing the degree of genetic diversity in the cattle genes. The greatest diversity —usually the sign of a species' original homeland—coincided closely with the territory archaeologists have defined for the Funnel Beaker culture.

The researchers then performed the same mapping exercise for the human genetic trait known as lactose tolerance, the ability to digest lactose in adulthood. They found that the highest percentage of people with lactose tolerance occurred among populations in a region that substantially overlapped with the ancient territory of the Funnel Beaker culture. The frequency of lactose tolerance dropped off progressively with distance among populations outside the core area.165

This finding is remarkable because it shows a human population evolving, in recent times, in response to change created by human culture. Lactose is a special sugar that accounts for most of the caloric content of mother's milk. The gene for lactase, the enzyme that digests lactose, is switched on just before birth and, in most people, switched off after weaning. Because lactose does not occur naturally in most people's diet, it would be a waste of the body's resources to continue making the lactase enzyme. But in people of mostly northern European extraction, and to some extent in African and Bedouin tribes that drink raw milk, the lactase gene remains switched on to early adulthood or throughout life. Among these milk drinkers, the ability to digest the lactose in cow's, sheep's or goat's milk evidently conferred so great a benefit that the genetic mutation conferring the ability became widespread.

Geneticists are still trying to define the exact genetic change that causes the lactase gene to stay active after weaning. The DNA sequence of the lactase gene itself is identical in both lactose tolerant and intolerant people. The difference must lie in some nearby region of DNA that controls the activation of the lactase gene, such as the two mutations recently discovered by Leena

Peltonen of the University of Helsinki.166 What is certain is that lactose tolerant Europeans have inherited unchanged from a common ancestor a huge block of DNA that includes the lactase gene, its neighboring gene and much else. The size of the block is a sign of recent evolutionary change. Big blocks of unchanged DNA are very rare because at each generation pairs of chromosomes swap sections of DNA so as to create individuals with novel combinations of genes. As is easy to envisage, the blocks of original DNA that a chromosome may start off with will get smaller and smaller at each generation as the swapping process whittles them down. So a large block of DNA shared by lots of people is a sign of recent selection. Large blocks are created when some must-have mutation occurs that is greatly favored by natural selection. Nature cannot pick out a specific mutation or gene; it can only favor individuals who have inherited the large block of DNA within which the advantageous gene occurs.

Besides indicating the presence of a gene under natural selection, a block of DNA can also be used to date the time the gene started to be selected, since the larger it is, the more recent the selection. Joel Hirschhorn of the Harvard Medical School has found that the block containing the lactase gene in lactose tolerant Europeans extends for about 1 million DNA units. He and colleagues believe that this is a sign of strong positive selection, and that the block started to become widespread sometime between 2,000 and 21,000 years ago.^ This date fits with that of the Funnel Beaker culture.

Lactose tolerance occurs in a high percentage of many northern Europeans who live in the former region of the Funnel Beaker culture—in 100% of Dutch people, according to one survey, and 99% of Swedes. The condition also occurs in many other populations, though at generally much lower rates. In Africa, tribes who keep cattle, sheep or goats have higher rates of lactose tolerance than nonpastoralists. Lactose tolerance in some African groups includes as much as 25% of the population. It is presumably less common in these African groups than in northern Europeans because pastoralism got started later in Africa and natural selection has had less time to raise the frequency of the gene.

Lactose tolerance seems to have a different genetic basis in Africa because the DNA differences found by Peltonen and colleagues to be diagnostic of lactose tolerance in Europeans are largely absent from Africa.168

The phenomenon of lactose tolerance draws attention to three aspects of human evolution. First, it confirms that evolution didn't stop 50,000 years ago, when modern humans left Africa, as is often assumed, but has continued to reshape the human genome.

Second, it shows the human genome is likely to have responded independently in different populations to the same stimulus, a process known as convergent evolution. Lactose tolerance has arisen independently in northern Europeans and in several African populations. Many other human attributes that have evolved since the African diaspora may also have taken place independently in different populations, such as the probable cognitive advances discussed in chapter 5. Third, the lactose tolerance phenomenon establishes that genes respond to cultural changes. This is not so surprising because culture is a major part of the human environment, and genomes are mechanisms for responding to the environment. But a feedback of culture on genes is rarely considered by social scientists, many of whom assume that human evolution ended for all practical purposes when cultural development began. The case of lactose tolerance shows that any long lasting human cultural behavior, such as drinking raw milk, can cause genetic changes if there is a way for the genome to respond to it. Looking back on the years between 50,000 and 5,000 years ago, from the time of the ancestral human population to that of the Funnel Beaker people and their contemporaries, it is clear that wrenching changes in the human environment took place during this period, particularly in the social environment. Hunter-gatherers learned to settle down and cooperate in larger groups with people to whom they had no kin relationship. People who had been egalitarian and generalist joined hierarchical societies in which occupations were increasingly specialized. All these changes probably induced different behaviors, some of them maybe mediated through evolutionary changes to the human genome.

Human nature, in other words, has probably changed significantly in the last 50,000 years. It cannot have changed profoundly, because the principal lineaments of human nature are the same in societies around the world, suggesting that all are inherited from a single source. But any characteristic with a genetic basis can vary, and is very likely to do so, because few genes remain constant for long periods of time. The question of human nature and its evolution is the subject to be considered next.

Was this article helpful?

0 0
The Power Of Charisma

The Power Of Charisma

You knowthere's something about you I like. I can't put my finger on it and it's not just the fact that you will download this ebook but there's something about you that makes you attractive.

Get My Free Ebook

Post a comment