Selected Readings

Gene Regulation in Metazoans

Arnone MI, Davidson EH. The hardwiring of development: organization and function of genomic regulatory systems. Development 1997; 124: 1851-1864.

Barolo S, Posakony JW. Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 2002,16: 1167-1181.

Davidson EH. Genomic regulatory systems: development and evolution. San Diego: Academic Press, 2001.

Kornberg RD. Eukaryotic transcriptional control. TCB-TIBS-TIG 2000: millennium issue M46-M49.

Ptashne M, Gann A. Genes and signals. Cold Spring Harbor, New York: Cold Spring Harbor Press, 2002: 115-142.

From Egg to Segments: The Anteroposterior Coordinate System

Burz DS, Rivera-Pomar R, Jäckle H, Hanes SD. Cooperative DNA-binding by Bicoid provides a mechanism for threshold-dependent gene activation in the Drosophila embryo. EMBO J 1998; 17: 5998-6009.

Driever W. In: Bate M, Arias AM, eds. The development of Drosophila melanogaster, vol 1. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1993: 301-324.

Driever W, Nüsslein-Volhard C. The bicoid protein is a positive regulator of hunchback transcription in the Drosophila embryo. Nature 1989; 337: 138-143.

Rivera-Pomar R, Jackie H. From gradients to stripes in Drosophila embryogenesis: filling in the gaps. Trend Genet 1996; 12: 478-483.

Small S, Blair A, Levine M. Regulation of even-skipped stripe 2 in the Drosophila embryo. EMBO J1992; 11: 4047-4057.

Stanojevic D, Small S, Levine M. Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science 1991; 254: 1385-1387.

The Dorsoventral Axis Coordinate System

Jiang J, Levine M. Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Cell 1993; 72: 741-752.

Rusch J, Levine M. Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo. Curr Opin Genet Dev 1996; 6: 416-423.

Stathopoulos A, Van Drenth M, Erives A, et al. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 2002; 111: 687-701.

The Hox Ground Plan

Casares F, Sánchez-Herrero E. Regulation of the infraabdominal regions of the bithorax complex of Drosophila by gap genes. Development 1995; 121: 1855-1866.

Müller J, Bienz M. Sharp anterior boundary of homeotic gene expression conferred by the fushi tarazu protein. EMBO J1992; 11: 3653-3661.

Qian S, Capovilla M, Pirrotta V. Molecular mechanisms of pattern formation by the BRE enhancer of the Ubx gene. EMBO J1993; 12: 3865-3877.

Shimell MJ, Simon J, Bender W, O'Connor MB. Enhancer point mutation results in a homeotic transformation in Drosophila. Science 1994; 264: 968-971.

Zhang C-C, Müller J, Hoch M, Jackle H. Target sequences for hunchback in control region conferring Ultrabithorax expression boundaries. Development 1991; 113: 1171-1179.

Secondary Fields: Integrating the Anteroposterior and Dorsoventral Coordinate Systems

Cohen B, Simcox AA, Cohen SM. Allocation of the thoracic imaginal primordia in the Drosophila embryo. Development 1993; 117: 597-608.

Goto S, Hayashi S. Specification of the embryonic limb primordium by graded activity of Decapentaplegic. Development 1997; 124: 125-132.

Kuo YM, Jones N, Zhou B, et al. Salivary duct determination in Drosophila: roles of the EGF receptor signaling pathway and the transcription factors Forkhead and Trachealess. Development 1996; 122: 1909-1917.

Michelson AM. Muscle pattern diversification in Drosophila is determined by the autonomous function of homeotic genes in the embryonic mesoderm. Development 1994; 120: 755-768.

Panzer S, Weigel D, Beckendorf SK. Organogenesis in Drosophila melanogaster: embryonic salivary gland determination is controlled by homeotic and dorsoventral patterning genes. Development 1992; 114: 49-57.

Vachon G, Cohen B, Pfeifle C, et al. Homeotic genes of the bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell 1992; 71: 437-450.

Yagi Y, Suzuki T, Hayashi S. Interaction between Drosophila EGF receptor and vnd determines three dorsoventral domains of the neuroectoderm. Development 1998; 125: 3625-3633.

The Wing Field

Basler K, Struhl G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 1994; 368: 208-214.

Dahmann C, Balser K. Compartment boundaries at the edge of development. Trend Genet 1999; 15: 320-326.

Halder G, Polaczyk P, Kraus ME, et al. The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in response to signaling proteins. Genes Dev 1998; 12: 3900-3909.

Kim J, Johnson K, Chen HJ, et al. MAD binds to DNA and directly mediates activation of vestigial by DPP. Nature 1997; 388: 304-308.

Lecuit T, Brook W, Ng M, et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 1996; 381: 387-393.

Milan M, Weihe U, Perez L, Cohen SM. The LRR proteins capricious and Tartan mediate cell interactions during DV boundary formation in the Drosophila wing. Cell 2001; 106: 785 -794.

Muller B, Hartmann B, Pyrowolakis G, et al. Conversion of an extracellular Dpp/BMP morphogen gradient into an inverse transcriptional gradient. Cell 2003; 113: 221-233.

Nellen D, Burke R, Struhl G, Basler K. Direct and long-range actions of a Dpp morphogen gradient. Cell 1996; 85: 357-368.

Neumann C, Cohen S. Morphogens and pattern formation. BioEssays 1997; 19: 721-729.

Sivasankaran R, Vigano MA, Affolter, M, Basler, K. Direct transcriptional control of the Dpp target omb by the DNA binding protein Brinker. EMBO J2000; 19: 6162-6172.

Strigini M, Cohen SM. Formation of morphogen gradients in the Drosophila wing. Semin Cell Dev Biol 1999; 10: 335-344.

Teleman AA, Cohen SM. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 2000; 103: 971-980.

Williams J, Paddock S, Vorwerk K, Carroll S. Organization of wing formation and induction of a wing-patterning gene at a compartment boundary. Nature 1994; 368: 299-305.

Zecca M, Basler K, Struhl G. Direct and long-range action of a wingless morphogen gradient. Cell 1996; 87: 833-844.

-. Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the

Drosophila wing. Development 1995; 121: 2265-2278.

Selector Proteins and Target Gene Regulation

Gebelein B, Culi J, Ryoo HD, et al. Specificity of Distalless repression and limb primordia development by abdominal Hox proteins. Dev Cell 2002; 3: 487-498.

Guss KA, Nelson CE, Hudson A, Kraus, ME, Carroll, SB. Control of a genetic regulatory network by a selector gene. Science 2001; 292: 1164-1167.

Kobayashi M, Fujioka M, Tolkunova EN, et al. Engrailed cooperates with extradenticle and homothorax to repress target genes in Drosophila. Development 2003; 130: 741-751.

Li X, McGinnis W. Activity regulation of Hox proteins, a mechanism for altering functional specificity in development and evolution. Proc Natl Acad Sci USA 1999; 96: 6802-6807.

Mann RS, Carroll SB. Molecular mechanisms of selector gene function and evolution. Curr Opin Genet Dev 2002; 12: 592-600.

Mann RS, Morata G. The development and molecular biology of genes that subdivide the body of Drosophila. Annu Rev Cell Dev Biol 2000; 16: 243-271.

Marty T, Vigano MA, Ribeiro C, et al. A HOX complex, a repressor element and a 50 bp sequence confer regional specificity to a DPP-responsive enhancer. Development 2001: 128: 2833-2845.

Ryoo HD, Marty T, Casares F, et al. Regulation of Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex. Development 1999: 126: 5137-5148.

Weihe U, Milan M, Cohen SM. Regulation of Apterous activity in Drosophila wing development. Development 2001; 128: 4615-4622.

Hox Genes' Modification of Regulatory Hierarchies in Secondary Fields

Akam M. Hox genes: from master genes to micromanagers. Curr Biol 1998; 8: R676-R678.

Galant R, Walsh C, Carroll SB. Hox protein repression of a target gene: Extradenticle-

independent, additive action through multiple monomer binding sites. Development2002; 129: 3115-3126.

Weatherbee SD, Carroll SB. Selector genes and limb identity in arthropods and vertebrates. Cell 1999; 97: 283-286.

Weatherbee S, Halder G, Hudson A, et al. Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere. Genes Dev 1998; 10: 1474-1482.

Vertebrate Somite Formation and Segmentation

Aulehla A, Wehrle C, Brand-Saberi B, et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell2003; 4: 395 -406.

Dale JK, Maroto M, Dequeant ML, Malapert P, McGrew M, Pourquie O. Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature 2003; 421: 275-278.

Dubrulle J, McGrew MJ, Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 2001; 106: 219-232.

Holley SA, Geisler R, Nusslein-Volhard C. Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. Genes Dev 2000;14: 1678-1690.

Jouve C, Palmeirim I, Henrique D, et al. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 2000; 127: 1421-1429.

Leimeister C, Dale K, Fischer A, et al. Oscillating expression of c-Hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors. Dev Biol 2000; 227: 91-103.

Pourquie O. The segmentation clock: converting embryonic time into spatial pattern. Science 2003; 301: 328-330.

Sawada A, Shinya M, Jiang YJ, Kawakami A, Kuroiwa A, Takeda H. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 2001; 128: 4873-4880.

Zakany J, Kmita M, Alarcon P, de la Pompa JL, Duboule D. Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock. Cell 2001; 106: 207-217.

The Vertebrate Hox Ground Plan

Lumsden A, Krumlauf R. Patterning the vertebrate neuraxis. Science 1996; 274: 1109-1114.

Manzanares M, Cordes S, Ariza-McNaughton L, et al. Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 1999; 126: 759-769.

Nonchev S, Maconochie M, Vesque C, et al. The conserved role of Krox-20 in directing Hox gene expression during vertebrate hindbrain segmentation. Proc Natl Acad Sci USA 1996; 93: 9339-9345.

Nonchev S, Vesque C. Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 1996; 122: 543-554.

Popperl H, Blenz M, Studer M, et al. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 1995; 81: 1031-1042.

Sharpe J, Nonchev S, Gould A, et al. Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO J1998; 17: 1788-1798.

Vesque C, Maconochie M, Nonchev S, et al. Hoxb-2 transcriptional activation in rhombomeres 3 and 5 requires an evolutionarily conserved cis-acting element in addition to the Krox-20 binding site. EMBO J1996; 15: 5383-5396.

Vertebrate Limb Initiation and Early Development

Barrow JR, Thomas KR, , Boussadia-Zahui O, et al. Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev 2003; 17: 394-409.

Kawakami Y, Capdevila J, Buscher D, et al. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 2001; 104: 891-900.

Naiche LA, Papaioannou VE. Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 2003; 130: 2681-2693.

Ng JK, Kawakami Y, Buscher D, et al. The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development 2002; 129: 5161-5170.

Rallis C, Bruneau BG, et al. Tbx5 is required for forelimb bud formation and continued outgrowth. Development 2003; 130: 2741-2751.

Soshnikova N, Zechner D, Huelsken J, et al. Genetic interaction between Wnt/beta-catenin and BMP receptor signaling during formation of the AER and the dorsal-ventral axis in the limb. Genes Dev 2003; 17: 1963-1968.

Takeuchi, JK, Koshiba-Takeuchi K, Suzuki T, Kamimura M, Ogura K, Ogura T. Tbx5 and Tbx4 trigger limb initiation through activation of the Wnt/Fgf signaling cascade. Development 2003; 130: 2729-2739.

Tickle C, Munsterberg A. Vertebrate limb development—the early stages in chick and mouse. Curr Opin Genet Dev 2001; 11: 476-481.

Patterning Along the Vertebrate Limb Axes

Cohn MJ, Patel K, Krumlauf R, Wilkinson DG, Clarke JD, Tickle C. Hox9 genes and vertebrate limb specification. Nature 1997; 387: 97-101.

Fernandez-Teran M, Piedra ME, Kathiriya IS, et al. Role of dHAND in the anterior-posterior polarization of the limb bud: implications for the Sonic hedgehog pathway. Development 2000; 127: 2133-2142.

Hartman C, Tabin CJ. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 2000; 127: 3141-3159.

Hérault Y, Beckers J, Kondo T, et al. Genetic analysis of a Hoxd-12 regulatory element reveals global versus local modes of controls in the HoxD complex. Development 1998; 125: 1669-1677.

Johnson RL, Tabin CJ. Molecular models for vertebrate limb development. Cell 1997; 90: 979-990.

Minina E, Kreschel C, et al. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 2002; 3: 439-449.

Nelson CE, Morgan BA, Burke AC, et al. Analysis of Hox gene expression with the chick limb bud. Development 1996; 122: 1449-1466.

Niswander L. Interplay between the molecular signals that control vertebrate limb development. Int J Dev Biol 2002; 46: 877-881.

Riddle C, Johnson R, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993; 75: 1401-1416.

Settle Jr SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM. Multiple joint and skeletal patterning defects caused by single and double mutations in mouse Gdf6 and Gdf5genes. Dev Biol 2003; 254: 116-130.

Shubin N, Tabin C, Carroll S. Fossils, genes and the evolution of animal limbs. Nature 1997; 388: 639-648.

te Welscher P, Fernandez-Teran M, Ros MA, et al. Mutual genetic antagonism involving GLI3 and dHAND prepatterns the vertebrate limb bud mesenchyme prior to SHH signaling. Genes Dev 2002; 16: 421-426.

te Welscher P, Zuniga A, Kuijper S, et al. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 2002; 298: 827-830.

Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 1996; 273: 613-622.

Weatherbee SD, Carroll SB. Selector genes and limb identity in arthropods and vertebrates. Cell 1999; 97: 283-286.

0 0

Post a comment