The Anatomy And Appearance Of The First Europeans

Classifying these European "special models", the Neanderthals, is to a high degree an intellectual game. Since scholars spoke at an early stage of "Neanderthal Men," the designation Homo sapiens neanderthalensis followed naturally. It, in turn, was replaced by the designation mostly used today—Homo neanderthalensis—which best represents the Neanderthal's special position in human evolution. Even though the nomenclature of the "other" fossil humans—the Neanderthals—was not entirely clarified, an image of the primitive fellow from the Neander Valley was created early in the study of primitive humans. The anatomical peculiarities— thick supraorbital ridges, powerful joints, and a large cranium—were already unquestioned as identifying features of the Neanderthal from the time of the first finds (Figure 1). Johann Carl Fuhlrott described the skeleton of the very first specimen as "giant bones," and all other members of the species that have been found are just as massive. The striking form of the skull was so unusual that it would not be found again even in the "most primitive races," opined Fuhlrott's scholarly helper, Hermann Schaaffhausen. Thus it is hardly surprising that the first sketch of the Neanderthal from Mettmann, which Schaaffhausen commissioned, appeared a little raw and uncouth (Figure 3a). Curiosity about the appearance of our early fellow humans was too great to keep artists, scholars, and model-makers from giving the Neanderthal a face. For a long time the fossil human from the ice age had to endure the mistaken image of the brutal stone-age dolt, with lots of muscles but little by way of brains. To some extent that view still survives today. Only after new finds and reconstructions did the image of the "wild man" transform into that of a civilized ice-age neighbor of modern humans (Figure 3b).

Thanks to the bone fragments that to date have been found at more than 80 known Neanderthal find sites from all over Europe, the Neanderthals have meanwhile become the best-researched fossil human form. Despite individual and regional differences, all Neanderthals share a combination of morphological characteristics that distinguish them clearly from other human species (Figure 11). These include physical build as well as the skull and lower jaw. How different the Neanderthals' anatomical characteristics are compared to modern humans can be seen in the fact that the discoverer, Johann Carl Fuhlrott had already remarked, without other finds for comparison, on the flat brow that is typical of the Neanderthals: "The narrow, flat, almost receding forehead is striking," as well as mentioning many other "unique features," which he published in the Transactions of the Natural History Society of the Prussian Rhineland and Westphalia in 1859. Today, the finds of more than 300 individual Neanderthals to date permit us to construct a very detailed picture of the Neanderthals' build and appearance. Powerful and rather stocky in stature, Neanderthals, with an average height of 166 centimeters, were not precisely built like giants. They were small, robust, and strong, more bulky at any rate than most modern humans. A strong musculature corresponded to the heavy skeleton. But Neanderthal anatomy was not different from that of modern humans merely in terms of muscle mass and skeleton strength— Neanderthal characteristics can be discerned from the head all the way down to the little toe (Figure 11).

Probably the most prominent characteristic in the anatomy of our stone-age neighbors is the skull: massive supraorbital ridges bound the long, flat cranium and attached receding forehead. The powerful bone ridge over the eyes already appeared in Homo erectus. But in Homo erectus it took the form of a continuous beam, whereas the Neanderthals' ridges were divided in two and furnished with air chambers. In modern humans this Torus supraorbitalis is completely lacking. It is not known what the purpose of these bones was. Whether the ridge played a role in chewing, was supposed to inspire fear in enemies, or simply served as protection for the Neanderthals' round eye cavities is pure speculation. Just as unclear is the function of the large nose. The Neanderthals' smelling organ is marked by a long, wide, and in general large and bony nose opening, and the inner nasal characteristics are also different from those of other types of archaic human. Going from the thesis that today one encounters people with broad, short noses particularly in hot regions, and people with longer noses in colder regions, one might explain the Neanderthal's long, big nose as a way to warm the cold air of the ice age before it could enter the lungs. Besides its respiratory function, the nose is also used to smell. The mucous membrane was further forward in Neanderthals than in modern jhir

jhir

Figure 10

Homo heidelbergensis also lived in the region of modern Thuringia, as attested by the archaeological site discovery and total of 37 fossil remains of the European Homo erectus in Bilzingsleben. The early human settlement includes work stations, fire areas, and living places, making it possible to draw a relatively accurate picture (a) of the daily life of these early Europeans. Throwing and cutting tools (b) in proximity to bone remains attest to a butchering place. The settlement age is estimated at c. 400,000-350,000 years.

humans. This improved the reception of smells, which could have been an advantage while finding food, and especially while hunting. The forward-jutting face of the Neanderthal was bounded by a receding chin. Like other extinct human forms, the Neanderthal thus lacked the protruding chin typical of modern humans. Therefore the strength of the Neanderthal's jaw lay less in the chin than in the row of lower teeth, which projected further forward. The first incisors, significantly larger than in modern humans, were used—both upper and lower—as a "third hand," for example in holding skins that were being sewn. Scratches in the tooth enamel

Homo sapiens High cranium

Homo neanderthalensis

Large mastoid process

Cheek cavity

Steeply sloping cranium

Homo sapiens High cranium

Large mastoid process

Cheek cavity

Foreward-jutting chin low eye cavaties

Broad nose

Foreward-jutting chin

Homo neanderthalensis

Supraorbited ridge Flat cranium low eye cavaties

Broad nose

Forward-projecting face

Neanderthal Cheekbone

Large lower jaw Large incisors

Forward-curving back of the head

Spaces behind the molars

Figure 11 Anatomically different: Homo neanderthalensis and Homo sapiens display clear differences in an anatomical comparison of their skull characteristics. The Neanderthals' most prominent characteristics are the strongly pronounced supraorbital ridges, the flat forehead, and a longer cranium.

Forward-projecting face

Large lower jaw Large incisors

Forward-curving back of the head

Spaces behind the molars

Supraorbited ridge Flat cranium

Figure 11 Anatomically different: Homo neanderthalensis and Homo sapiens display clear differences in an anatomical comparison of their skull characteristics. The Neanderthals' most prominent characteristics are the strongly pronounced supraorbital ridges, the flat forehead, and a longer cranium.

support this thesis. Thus it is hardly surprising that Neanderthals' biting apparatus shows evidence of heavy wear. But Neanderthals did not have to go down to the gums, because the roots of the molars were connected and less divided into two branches than ours. The inside of the Neanderthal tooth had a much larger pulp cavity, which allowed them to wear their teeth right down to the roots.

Much more fragile finds than the hard teeth provide evidence regarding closer or more distant relationship to the Neanderthals in various characteristics. Surprisingly, there are fossil remains even of the filigreed inner ear and the highly fragile hyoid bone, which, despite their small size, provided an immense contribution to research on the relationship between Homo sapiens and Homo neanderthalensis. The discovery of a fossil hyoid bone at Kebara in Israel in 1983 made it possible to end the long speculation about whether Neanderthals could speak, at least from the biological perspective; or maybe not. It has been firmly established that this hyoid bone, freestanding in the muscles, is the attachment point for several throat muscles. But of course the hyoid bone is not an independent "instrument" that could produce language on its own. It is instead a single part of a more complex structure. We do not know what the cartilage looked like, because cartilage does not survive in fossils. So what does that mean in terms of language? Sounds are produced in the larynx, but words must be formed with the tongue and hyoid bone. The movement also alters the pharynx. In Neanderthals the mouth cavity is relatively high, and the tongue was large, long, and placed further forward. Even though the discovery ofthe Kebara hyoid bone does not represent conclusive evidence for the Neanderthals' ability to speak, the very fact that the Neanderthals were biologically capable of coaxing articulated sounds from their palate is an important indicator at least for the anatomical ability to speak. Their mode of life, with hunting, cultural activities, and tool preparation, allows us to assume a communication system that corresponded in its specialization to that of modern humans.

Another anatomical feature of the Neanderthals, although perhaps variable, is the position of the inner ear. By means of computer tomography studies, which produced a stratification image of the equilibrium organ in the inner ear ofNeanderthals, Homo erectus, and modern humans, it has been possible to distinguish a significant difference in the position of the semicircular canals. In Neanderthals, the lower semicircular canal of the labyrinth is noticeably deeper than in Homo erectus and modern humans. Fred Spoor and Jean-Jacques Hublin, the first investigators of fossil inner ears, concluded from this evidence that Homo erectus and modern humans were more closely related anatomically than the Neanderthals and Homo sapiens.

Further anatomical distinguishing features of the Neanderthal's skull include, for example, the lack of cheek cavities, a bulge at the back of the head, and a space between the last molar and the branch of the lower jaw. But it is not only the outside of the skull that displays firm evidence for analysis. Brain size and the organization of the brain centers are important anatomical comparative elements for the interpretation of human evolution. Over the past four million years, the increase in brain volume is one of the most reliable indicators in the interpretation of hominid finds. The classic Neanderthals, who settled Europe during the last ice age (90,000-27,000 bp) possessed brains that on the average were somewhat larger than ours today. With a worldwide average of 1200 to 1400 milliliters, we fall below that of the classic Neanderthals, who had a brain volume of between 1300 and 1700 milliliters. To be sure, the brain volume is always only meaningful in relation to a human's body mass.

There is great interest in the evolution of the brain and in its specialization, since the "success" of the human family to date can be attributed to its presumed intelligence. This raises an important question: how and why the human family—whether Neanderthals or Homo sapiens—could in fact have produced an organ like the brain at all. Measured by average adult body weight, the brain constitutes about 2 percent of a human, but requires more than 20 percent of the energy. It is an expensive organ, which must be fed and especially cooled regularly. An improved energy supply through protein-rich food such as meat might have played a key role, as well as improved cooling through a lavish system of veins. The growing brain provided the precondition for humans' more complex abilities. Social relations, language, and developments such as tool and jewelry culture might have come into being at the beginning of human evolution, from the perspectives of both cultural philosophy and sociology. They are only indicators for the final step of a brain development that had its beginning four million years ago. Thus the Neanderthals, from a chronological perspective, have a quite modern brain. Their brain mass was limited by a rather low and flat skull cap. Endocranial casts, that is, interior effusions from the cranium, allow us to determine the existence of highly developed brains with Broca and Wernicki's areas—besides the cerebellum, further requirements for human language ability. The extended back of the head as seat of the occipital lobe of the cerebrum shows that the optical areas, such as optical recognition, sense of place, and perception of color and brightness, were well developed in the Neanderthals.

The reason for the Neanderthals' larger brain might indirectly go back to the climate of the ice age. If one measures the body proportions of humans today and compares them with geographical and climatic data from their habitat, it is striking that build is more compact the colder the climate becomes. The relatively short but brawny Neanderthals are thus often compared in terms of their size and environment to the Inuit of the Arctic. The shorter legs and arms have the advantage of not exposing too much of the body surface to the icy temperatures. Similarly, the Inuits' brain size is larger in comparison to other humans. The size of the brain might thus reflect greater metabolic efficiency in the colder zones.

Even though the reason for the Neanderthals' enormous thinking apparatus has not yet been explained decisively, it makes sense to regard the Neanderthals' reduced body size as a consequence of adaptation to the cold. If, for example, one compares the relative length of the tibia and femur in Neanderthals, Lapps, and Africans, it is also clear that climate not only has effects on humans' lifestyle but also on their bodily structure and their appearance. While among the Lapps the tibia is 79 percent the length of the femur, this correspondence is 86 percent among Africans, who in other words have much longer lower legs. The tibia of Neanderthals measures only 71 percent of the femur; thus the Neanderthals had noticeably shorter legs than modern people from Lappland.

On the whole, Neanderthal bones were far more strongly built than those of modern humans. Besides their general robustness, the knee and hip joints were particularly massive. Even if the Neanderthals might have had no reason to show off with their muscles, they would certainly be compared today to power trainers. One can already see evidence of strong muscles at the bone attachment points of young Neanderthals; this is a sign that the build and muscular development were not just the products of a hard life, but were hereditary. The Neanderthals' muscular structure was created for extreme movements. Their shoulder area, for example, shows evidence of totally different muscle starting surfaces than in people today. Consequently, "sports injuries" such as a dislocated shoulder would have been rare when carrying heavy burdens or moving quickly. The pelvis, too, was built for extreme loads. Although only a few complete Neanderthal pelvises have been uncovered, with the help of the almost completely intact pelvis of the Kebara Man (Figure 14), it is possible to confirm conclusions that had already been reached from examination of the fragmentary Neanderthal pelvises that had been found hitherto. According to these findings, the Neanderthals possessed broader hip bones and longer, thinner pubic bone branches. On the whole, their hip joint was more strongly aligned toward the side—a difference that allows us to determine that they walked rather clumsily. In a Neanderthal woman, a result of these characteristics was that the birth canal lay further forward. This adaptation was perhaps necessary for survival: only thus could the large skull of a Neanderthal baby pass through its mother's pelvis.

The morphological differences between Neanderthal women and men are comparable to the variations between modern female and male Homo sapiens. Neanderthal women averaged about 95 percent the height of Neanderthal men. Female Neanderthals were indeed smaller than the male members of their species, but were their equals in robust build. The Neanderthal was more strongly built than the modern human, down to the tips of toes and fingers. With short and sturdy hand bones, he could grip powerfully and hold onto what he had grabbed. The large, barrel-shaped thoracic cage of the Neanderthal offered sufficient room for large lungs and attests in general to an active lifestyle.

This list of differences between the characteristics of Neanderthals and modern humans is certainly not complete, but at least shows the multitude of differences that, biologically speaking, make it plain that we are dealing with two different species, Homo sapiens and Homo neanderthalensis.

THE NEANDERTHALS' PARENTS

We cannot tell precisely when these Neanderthal characteristics first appeared and became general. Meanwhile, most paleoanthropologists are of the opinion that the Neanderthal might have emerged from a population of Homo heidelbergensis. Accordingly, the origin of the Neanderthals is to be sought in Europe, since nowhere else have there been finds of this fossil human type. The development of this unique human type begins with the ante-Neanderthal period, represented for example by the Homo steinheimensis from Württemberg (Figure 12a). This earliest phase in Neanderthal evolution is dated to between 400,000 and 180,000 years bp. Following this is the era ofthe early Neanderthals, about 180,000 to 90,000 years ago. The classic Neanderthals, such as the man from Mettmann and his contemporaries, appeared first in Europe in the period from 100,000 to 27,000 years bp, and then also further afield in Kurdistan, Kazakhstan, and Israel. This last phase of the Neanderthals in Europe also saw the first appearance of modern humans there, about 40,000 years ago (see Figures 5 and 18).

Whoever the humans were who settled Europe—whether Homo erectus, Homo heidelbergensis, or the Neanderthals—they were all dependent on the ice age's changing climate. They adapted, retreated, survived, or died out. The modern human, who developed in Africa at the same time as the Neanderthals in Europe, enjoyed a tiny advantage—the weather. Homo sapiens was, so to speak, a true "sun lover," pampered by a warm climate that for a long time had had an impact on the whole continent's flora and fauna. At the time when the forerunners of Homo sapiens appeared in Africa—whether 600,000 years ago with the Bodo Man in Ethiopia or the man from Kabwe, Zambia, about half as old—they encountered an animal and plant world essentially unchanged for millions of years. In contrast, the major climate conditions were less uniform in Europe in the pleistocene. Affected by the ice age, in Europe it was a matter of larger migration movements and the modification or new formation of our ancestors' morphological features. The Neanderthals, too, passed through an evolution. Thus the typical characteristics of Neanderthals are not found in the ante-Neanderthals and their predecessors, but only formed gradually, until the classic Neanderthals had reached the apogee of their development about 60,000 years ago. Looking at a map of the oldest Neanderthal finds shows clearly that this robust European line must have developed from a single European population. Some Homo heidelbergensis remains, such as those from Arago in France (Figure 9c), which were found together with very simple tools and have been assigned an age of 400,000 years, already display morphological similarities to the Neanderthals.

An important find site for the ante-Neanderthals lies in Swanscombe, England, where three skull fragments and Acheulean tools (400,000250,000 years bp) were uncovered. Homo steinheimensis, found at Steinheim an der Murr in 1933 (Figure 12a), already practically shows, with its age of 250,000 years, a transition to the Neanderthals. Its large

Neanderthals Bone Structure

Figure 12 (a) This somewhat battered skull of Homo steinheimensis was found in 1933 at Steinheim an der Murr. This Middle Pleistocene man has an estimated age of 250,000 years and belongs to the Ante-Neanderthals. (b) The bonecave Sima de los Huesos in Atapuerca yielded the skulls and skeletal remains of about 32 individuals, which are between 300,000 and 200,000 years old. Atapuerca V is the most complete skull yet found of an adult Ante-Neanderthal; the lower jaw that belongs with it (AT 888) was uncovered in a later excavation. (c) The Croatian find Krapina III is dated to an age of 130,000 years and belongs to the group of early Neanderthals.

Figure 12 (a) This somewhat battered skull of Homo steinheimensis was found in 1933 at Steinheim an der Murr. This Middle Pleistocene man has an estimated age of 250,000 years and belongs to the Ante-Neanderthals. (b) The bonecave Sima de los Huesos in Atapuerca yielded the skulls and skeletal remains of about 32 individuals, which are between 300,000 and 200,000 years old. Atapuerca V is the most complete skull yet found of an adult Ante-Neanderthal; the lower jaw that belongs with it (AT 888) was uncovered in a later excavation. (c) The Croatian find Krapina III is dated to an age of 130,000 years and belongs to the group of early Neanderthals.

Figure 12 Continued

nose, receding forehead, and supraorbital ridges are very marked, but otherwise the very fragmentary skull is still very delicate and is thus often classified as a predecessor of Homo sapiens. Soon, though, a detailed analysis of the Steinheim skull might shed light on this question. Both the Steinheim and the Swanscombe humans were, after their discovery in the 1930s, taken as evidence for the now-contested "pre-sapiens hypothesis," according to which these representatives of our forebears were rejected as ancestors of the Neanderthals. But the Swanscombe skull too shows anatomical correspondences to the Neanderthals at the back of the head.

Finds from Vertesszollos in Hungary, 350,000 years old, completed our picture of the ante-Neanderthals. Jaw fragments, pieces of vertebrae, and

Figure 12 Continued

teeth with an age of 250,000-190,000 years are also attested from Pontnewydd in Wales. The northern Spanish find site Sima de los Huesos (Figure 12b), which means "bone pit," breaks all records. It comes from a find level of similar age to Steinheim, between 300,000 and 200,000 years bp, and has yielded a multitude of fragments. With a full 2000 bone fragments belonging to 32 individuals, this find site was to some extant an El Dorado for Juan Arsuaga and his colleagues. For the first time, he and his team were able to investigate more precisely the entire range in the morphology of a middle ice-age population. Especially noteworthy are an almost complete adult skull, the cranium of another adult, and the fragmentary cranium of an adolescent individual. Each of the three skulls is related to the ante-Neanderthals in the morphology of the back of the head and the supraorbital ridges. The American paleoanthropologist Ian Tattersall concludes from them that the three finds, uncovered in 1992, should be classified as Homo heidelbergensis.

Far older, at least in date of discovery, is the German site WeimarEhringsdorf. The 1908 discovery consisted of skull bones, parietal bone, lower jaw, and parts of nine individuals uncovered to date. The fossil human fragments were found together with remains of animals and plants, which have allowed us to determine that there was a moderate climate at the time. Today, the age of the find has been dated radio-metrically to 230,000 years; the inventory of tools that was also found is very similar to the predecessor tools of the Mousterian culture. Strati-graphically, however, the finds are classified as belonging to the period c. 130,000-115,000 years bp, which appears more likely than the single laboratory measurements, since this latter date is based on numerous and thoroughly investigated geologically and paleontologically comparable sites in Thuringia. According to this, the Ehringsdorf finds should probably be placed in the era of the early Neanderthals.

EARLY NEANDERTHALS

The early Neanderthals, also called pre-Neanderthals or—more properly—proto-Neanderthals, already display all the characteristics of the classic Neanderthal, although admittedly in a somewhat weaker form. The imprint of the early Neanderthals' anatomical characteristics, today recognized as identifying the features of this type, can be observed in finds from the penultimate deepest cold period in the ice age, c. 180,000 to 130,000 years ago. These early Neanderthals are demonstrably the first Neanderthals who defied Europe's frost and cold rather than getting away to warmer climes. A well-known habitation of one of the oldest early Neanderthals is the French Lazaret Grotto, discovered in the 1950s. This site allows us a very precise look at the world of the early Europeans, because not just a cave dweller was found but, within the grotto, a pile of stones, animal bones, and stone implements that had apparently been placed on posts in the cave wall as a shelter. Hearths and tools that are classified as Acheulean bear witness to a daily culture that can be described as completely similar to that of later modern humans. A little more recent than the cave dweller of Lazaret are the remains of two individuals with an age of approximately 176,000 years from Biache-Saint-Vaast in northern France. On the whole, though, the finds from the world of these really early Neanderthals are extremely limited.

Many more specimens are available from the later intermediate period, 127,000-115,000 years bp. A c. 120,000-year-old skull from Saccopastore, Italy, uncovered in 1925, is among the best-preserved remains of a primitive European; it comes from the Eem warm period. On the basis of the skull's rather light build, the find is regarded as that of a female Neanderthal. In addition, excavators unearthed the skull base and parts of the face bones of an individual that, because of their heavier build, are regarded as those of a male. Like their distant neighbors of Husnjak Mountain near Krapina in Croatia, the two humans from Saccopastore used Mousterian tools. The find site, discovered by Dragutin Gorjanovic-Kramberger in 1899, offers not just 426 stone artifacts but 876 skull and skeleton remains (Figure 12c) belonging to approximately 20 to 30 individuals. In comparison to central European early Neanderthals, they were less robustly built, but with an age of 130,00 to 90,000 years are to be classified with this type.

In the Levant, the era of the early Neanderthals is represented by finds in Zuttiyeh and Tabun, Palestine. At Zuttiyeh a forehead bone was discovered with eye rim and temple. The skull remains have an estimated age of 150,000 to 100,000 years. Much better known than the Palestinian find is the skull uncovered in the Forbes Quarry in 1848 known as "Gibraltar I," which is dated to 127,000 to 115, 000 years BP(Figure 2b). Further finds of early Neanderthals, with an age of 130,000 years, come from Altamura in Italy. Skull fragments and teeth were also unearthed in the French La Chaise; the excavation of this 130,000- to 250,000-year-old find site was carried out from 1949 to 1975. The Italian find site of Altamura in Apulia is remarkable because it contained a Neanderthal skeleton in situ. The twisting tunnels of the Lamalunga Cave open picturesque views into the "grave chamber" of a dead early European. This site, discovered in 1993, has an apparently complete skeleton encased in a stalactite.

The find site Ochtendung in the eastern Eifel, discovered in 1997, offers another window into the period of the early Neanderthals. The discoverers of the three skull fragments there, Axel von Berg and his colleague Silvana Condemi, estimate the age of these remains at c. 180,000 years. Especially striking about the fossil is the robust build of the skull cap. With a thickness of 1.1 centimeters, it is much stronger than in modern humans. Still more striking than the thickness of the skull cap are the traces suggesting that the skull fragment from Ochtendung had been worked on. Was the skull possibly used as a container, and worked on for that reason? Stone tools, found right beside the skull piece of this oldest Rhinelander, suggest that this might have been the case.

Was this article helpful?

0 0

Post a comment