Classification Of Asteroids

In the mid-1970s astronomers, using information gathered from studies of colour, spectral reflectance, and albedo, recognized that asteroids could be grouped into three broad taxonomic classes, designated C, S, and M. At that time they estimated that about 75 percent belonged to class C, 15 percent to class S, and 5 percent to class M. The remaining 5 percent were unclassifiable owing to either poor data or genuinely unusual properties. Furthermore, they noted that the S class dominated the population at the inner edge of the asteroid belt, whereas the C class was dominant in the middle and outer regions of the belt.

Within a decade this taxonomic system was expanded, and it was recognized that the asteroid belt comprised overlapping rings of differing taxonomic classes, with classes designated S, C, P, and D dominating the populations at distances from the Sun of about 2, 3, 4, and 5 AU, respectively. As more data became available from further observations, additional minor classes were recognized.

Rotation and Shape

The rotation periods and shapes of asteroids are determined primarily by monitoring their changing brightness on timescales of minutes to days. Short-period fluctuations in brightness caused by the rotation of an irregularly shaped asteroid or a spherical spotted asteroid (i.e., one with albedo differences) produce a light curve—a graph of brightness versus time—that repeats at regular intervals corresponding to an asteroid's rotation period. The range of brightness variation is closely related to an asteroid's shape or spottedness but is more difficult to interpret.

In the early years of the 21st century, rotation periods were known for more than 2,300 asteroids. They range from 42.7 seconds to 50 days, but more than 70 percent lie between 4 and 24 hours. In some cases, periods longer than a few days may actually be due to precession (a smooth slow circling of the rotation axis) caused by an unseen satellite of the asteroid. Periods on the order of minutes are observed only for very small objects (those with diameters less than about 150 metres [492 feet]). The largest asteroids (those with diameters greater than about 200 km [1214 miles]) have a mean rotation period close to 8 hours; the value increases to 13 hours for asteroids with diameters of about 100 km (62 miles) and then decreases to about 6 hours for those with diameters of about 10 km (6 miles).

The largest asteroids may have preserved the rotation rates they had when they were formed, but the smaller ones almost certainly have had theirs modified by subsequent collisions and, in the case of the very smallest, perhaps also by radiation effects. The difference in rotation periods between 200-km-class (124 mile) and 100-km-class (62 mile) asteroids is believed to stem from the fact that large asteroids retain all of the collision debris from minor collisions, whereas smaller asteroids retain more of the debris ejected in the direction opposite to that of their spins, causing a loss of angular momentum and thus a reduction in speed of rotation.

Major collisions can completely disrupt smaller asteroids. The debris from such collisions makes still smaller asteroids, which can have virtually any shape or spin rate. Thus, the fact that no rotation periods shorter than about 2 hours have been observed for asteroids greater than about 150 metres (492 feet) in diameter implies that their material strengths are not high enough to withstand the centripetal forces that such rapid spins produce.

It is impossible to distinguish mathematically between the rotation of a spotted sphere and an irregular shape of uniform reflectivity on the basis of observed brightness changes alone. Nevertheless, the fact that opposite sides of most asteroids appear to differ no more than a few percent in albedo suggests that their brightness variations are due mainly to changes in the projection of their illuminated portions as seen from Earth. Hence, in the absence of evidence to the contrary, astronomers generally accept that variations in reflectivity contribute little to the observed amplitude, or range in brightness variation, of an asteroid's rotational light curve. Vesta is a notable exception to this generalization because the difference in reflectivity between its opposite hemispheres is known to be sufficient to account for much of its modest light-curve amplitude.

Observed light-curve amplitudes for asteroids range from zero to a factor of 6.5, the latter being the case for the Apollo asteroid Geographos. A rotating asteroid shows a light-curve amplitude of zero (no change in amplitude) when its shape is a uniform sphere or when it is viewed along one of its rotational poles. Before Geographos was studied by radar, its 6.5 to 1 variation in brightness was ascribed to either of two possibilities: the asteroid is a cigar-shaped object that is being viewed along a line perpendicular to its rotational axis (which for normally rotating asteroids is the shortest axis), or it is a pair of objects nearly in contact that orbit each other around their centre of mass. The radar images ruled out the binary model, revealing that Geographos is a single, highly elongated object.

The mean rotational light-curve amplitude for asteroids is a factor of about 1.3. This data, together with the assumptions discussed above, allow astronomers to estimate asteroid shapes, which occur in a wide range. Some asteroids, such as Ceres, Pallas, and Vesta, are nearly spherical, whereas others, such as (15) Eunomia, (107) Camilla, and (511) Davida, are quite elongated. Still others, as, for example, (1580) Betulia, Hektor, and Castalia (the last of which appears in radar observations to be two bodies in contact), apparently have bizarre shapes.

Mass and Density

Most asteroid masses are low, although present-day observations show that the asteroids measurably perturb the orbits of the major planets. Except for Mars, however, these perturbations are too small to allow the masses of the asteroids in question to be determined. Radio-ranging measurements that were transmitted from the surface of Mars between 1976 and 1980 by the two Viking landers and time-delay radar observations using the Mars Pathfinder lander made it possible to determine distances to Mars with an accuracy of about 10 metres (32 feet). The three largest asteroids—Ceres, Vesta, and Pallas—were found to cause departures of Mars from its predicted orbit in excess of 50 metres (164 feet) over times of 10 years or less. The measured departures, in turn, were used to estimate the masses of the three asteroids. Masses for a number of other asteroids have been determined by noting their effect on the orbits of other asteroids that they approach closely and regularly, on the orbits of the asteroids' satellites, or on spacecraft orbiting or flying by the asteroids. For those asteroids whose diameters are determined and whose shapes are either spherical or ellipsoidal, their volumes are easily calculated. Knowledge of the mass and volume allows the density to be calculated. For asteroids with satellites, the density can be determined directly from the satellite's orbit without knowledge of the mass.

The mass of the largest asteroid, Ceres, is 9.1 * 1020 kg (2 * 1021 pounds), or less than 0.0002 the mass of Earth. The masses of the second and third largest asteroids, Pallas and Vesta, are each only about one-fourth the mass of Ceres. The mass of the entire asteroid belt is roughly three times that of Ceres. Most of the mass in the asteroid belt is concentrated in the larger asteroids, with about 90 percent of the total in asteroids having diameters greater than 100 km (62 miles). The 10th largest asteroid has only about %o the mass of Ceres. Of the total mass of the asteroids, 90 percent is located in the main belt, 9 percent is in the outer belt (including Jupiter's Trojan asteroids), and the remainder is distributed among the Hungarias and planet-crossing asteroid populations.

The densities of Ceres, Pallas, and Vesta are 2.2, 2.9, and 3.5 grams per cubic cm (1.3, 1.7, and 2 ounces per cubic inch), respectively. These compare with 5.4, 5.2, and 5.5 g/cm3 (3.1, 3, and 3.2 oz/in3) for Mercury, Venus, and Earth, respectively; 3.9 g/cm3 (2.3 oz/in3) for Mars; and 3.3 g/cm3 (1.9 oz/in3) for the Moon. The density of Ceres is similar to that of a class of meteorites known as carbonaceous chondrites, which contain a larger fraction of volatile material than do ordinary terrestrial rocks and hence have a somewhat lower density. The density of Pallas and Vesta are similar to those of Mars and the Moon. Insofar as Ceres, Pallas, and Vesta are typical of asteroids in general, it can be concluded that main-belt asteroids are rocky bodies.

Composition

The combination of albedos and spectral reflectance measurements—specifically, measures of the amount of reflected sunlight at wavelengths between about 0.3 and 1.1 micrometres (0.00001 and 0.00004 inch)—is used to classify asteroids into various taxonomic groups, as mentioned above. If sufficient spectral resolution is available, especially extending to wavelengths of about 2.5 ^m (0.0001 inch), these measurements also can be used to infer the composition of the surface reflecting the light. This can be done by comparing the asteroid data with data obtained in the laboratory using meteorites or terrestrial rocks or minerals.

By the end of the 1980s, spectral reflectance measurements at wavelengths between 0.3 and 1.1 ^m (0.00001 and 0.0004 inch) were available for about 1,000 asteroids, while albedos were determined for roughly 2,000. Both types of data were available for about 400 asteroids. The table summarizes the taxonomic classes into which the asteroids are divided on the basis of such data. Starting in the 1990s, the use of detectors with improved resolution and sensitivity for spectral reflectance measurements resulted in revised taxonomies. These versions are similar to the one presented in the table, the major difference being that the higher-resolution data has allowed many of the classes, especially the S class, to be further subdivided.

Asteroids of the B, C, F, and G classes have low albedos and spectral reflectances similar to those of carbonaceous chondritic meteorites and their constituent assemblages produced by hydrothermal alteration and/or meta-morphism of carbonaceous precursor materials. Some C-class asteroids are known to have hydrated minerals on their surfaces, whereas Ceres, a G-class asteroid, probably has water present as a layer of permafrost. K- and S-class asteroids have moderate albedos and spectral reflectances similar to the stony iron meteorites, and they are known to contain significant amounts of silicates and metals, including the minerals olivine and pyroxene on their surfaces. M-class asteroids are moderate-albedo objects, may have significant amounts of nickel-iron metal in their surface material, and exhibit spectral reflectances similar to

0 0

Post a comment