Identifying Comets and Determining Their Orbits

Up to the beginning of the 19th century, comets were discovered exclusively by visual means. Many discoveries are still made visually with moderate-size telescopes by amateur astronomers. Although comets can be present in any region of the sky, they are often discovered near the western horizon after sunset or near the eastern horizon before sunrise, since they are brightest when closest to the Sun. Because of Earth's rotation and direction of motion in its orbit, discoveries before sunrise are more likely, as confirmed by discovery statistics.

At discovery a comet may still be faint enough not to have developed a tail; therefore, it may look like any nebulous object—e.g., an emission nebula, a globular star cluster, or a galaxy. The famous 18th-century French comet hunter Charles Messier (nicknamed "the ferret of comets" by Louis XV for his discovery of 21 comets) compiled his well-known catalog of "nebulous objects" so that such objects would not be mistaken for comets. The final criterion remains the apparent displacement of the comet after a few hours or a few days with respect to the distant stars; by contrast, the nebulous objects of Messier's catalog do not move. After such a displacement has been indisputably observed, any amateur wishing to have the comet named for himself must report his claim to the nearest observatory as soon as possible.

Most comets are and remain extremely faint. Today, a larger and larger proportion of comet discoveries are thus made fortuitously from high-resolution photographs, as, for instance, those taken during sky surveys by professional astronomers engaged in other projects. The faintest recorded comets approach the limit of detection of large telescopes (those that are 8 metres [26 feet] or more in diameter). Several successive observations of these faint moving objects are necessary to ensure identification and simultaneous calculation of a preliminary orbit. In order to determine a preliminary orbit as quickly as possible, the eccentricity e = 1 is assumed since some 90 percent of the observed eccentricities are close to one, and a parabolic motion is computed. This is generally sufficient to ensure against "losing" the comet in the sky.

The best conic section representing the path of the comet at a given instant is known as the osculating orbit. It is tangent to the true path of the chosen instant, and the velocity at that point is the same as the true instantaneous velocity of the comet. Nowadays, high-speed computers make it possible to produce a final ephem-eris (table of positions) that is not only based on the definitive orbit but also includes the gravitational forces of the Sun and of all significant planets that constantly change the osculating orbit. In spite of this fact, the deviation between the observed and the predicted positions usually grows (imperceptibly) with the square of time. This is the signature of a "neglected" acceleration, which comes from a nongravitational force. Formulas representing the smooth variation of the nongravitational force with heliocentric distance are now included for many orbits. The most successful formula assumes that water ice prevails and controls the vaporization of the nucleus.

0 0

Post a comment