The Atmosphere

Although the detection of methane ice on Pluto's surface in the 1970s gave scientists confidence that the body had an atmosphere, direct observation of it had to wait until the next decade. Discovery of its atmosphere was made in 1988 when Pluto passed in front of (or occulted) a star as observed from Earth. The star's light gradually dimmed just before it disappeared behind Pluto, demonstrating the presence of a thin, greatly distended atmosphere. Because Pluto's atmosphere must consist of vapours in equilibrium with their ices, small changes in temperature should have a large effect on the amount of gas in the atmosphere. During the years surrounding Pluto's perihelion in 1989, when Pluto was slightly less cold than average, more of its frozen gases vaporized; the atmosphere was then at or near its thickest, making it a favourable time to study the body. Astronomers estimate a surface pressure in the range of a few to several tens of microbars. At aphelion, when Pluto is receiving the least sunlight, its atmosphere may not be detectable at all.

Observations made during occultations cannot provide direct information about atmospheric composition, but they can allow determination of the ratio of mean molecular weight to temperature. Using reasonable assumptions about the atmospheric temperature, scientists have calculated that each particle—i.e., each atom or molecule—of Pluto's atmosphere has a mean molecular weight of approximately 25 atomic mass units. This implies that significant amounts of gases heavier than methane, which has a molecular weight of 16, must also be present. Molecular nitrogen, with a molecular weight of 28, must in fact be the dominant constituent, because nitrogen ice was discovered on the surface and is known to be more volatile than methane ice. Nitrogen is also the main constituent of the atmospheres of both Triton and Saturn's largest satellite, Titan, as well as of Earth.

Although ongoing Earth-based observations will add to knowledge about the atmosphere and other aspects of Pluto, major new insights will likely require a close-up visit from a spacecraft. Scientists looked to the U.S. New Horizons spacecraft mission, launched in 2006, to Pluto, Charon, and the outer solar system beyond to provide much of the needed data. The mission plan called for a nine-year flight to the Pluto-Charon system followed by a 150-day flyby for investigation of the surfaces, atmospheres, interiors, and space environment of the two bodies.

0 0

Post a comment