The interior

Although Uranus has a somewhat lower density than Jupiter, it has a higher proportion of elements heavier than hydrogen and helium. Jupiter's greater mass (by a factor of 22) leads to a greater gravitational force and thus greater self-compression than for Uranus. This additional compression adds to Jupiter's bulk density. If Uranus were made of the same proportions of material as Jupiter, it would be considerably less dense than it is.

Different models proposed for the Uranian interior assume different ratios of rock (silicates and metals), ices (water, methane, and ammonia), and gases (essentially hydrogen and helium). At the high temperatures and pressures within the giant planets, the "ices" will in fact be liquids. To be consistent with the bulk density data, the mass of rock plus ice must constitute roughly 80 percent of the total mass of Uranus, compared with 10 percent for Jupiter and 2 percent for a mixture of the Sun's composition. In all models Uranus is a fluid planet, with the gaseous higher atmosphere gradually merging with the liquid interior. Pressure at the centre of the planet is about five megabars.

Scientists have obtained more information about the interior by comparing a given model's response to centrifugal forces, which arise from the planet's rotation, with the response of the actual planet measured by Voyager 2. This response is expressed in terms of the planet's oblateness. By measuring the degree of flattening at the poles and relating it to the speed of rotation, scientists can infer the density distribution inside the planet. For two planets with the same mass and bulk density, the planet with more of its mass concentrated close to the centre would be less flattened by rotation. Before the Voyager mission, it was difficult to choose between models in which the three components—rock, ice, and gas—were separated into distinct layers and those in which the ice and gas were well mixed. From the combination of large oblateness and comparatively slow rotation for Uranus measured by Voyager, it appears that the ice and gas are well mixed and a rocky core is small or nonexistent.

The fact that the mixed model of Uranus fits observations better than the layered model may reveal information on the planet's formation. Rather than indicating a process in which Uranus formed from a rock-ice core that subsequently captured gas from the solar nebula, the mixed model seems to favour one in which large, solid objects were continually captured into a giant planet that already contained major amounts of the gaseous component.

Unlike the other three giant planets, Uranus does not radiate a substantial amount of excess internal heat. The total heat output is determined from the planet's measured infrared emissions, while the heat input is determined from the fraction of incident sunlight that is absorbed—i.e., not scattered back into space. For Uranus the ratio of the two is between 1.00 and 1.14, which means that its internal energy source supplies, at most, 14 percent more energy than the planet receives from the Sun. (The equivalent ratios for the other giant planets are greater than 1.7.) The small terrestrial planets—Mercury, Venus, Earth, and Mars—generate relatively little internal heat; the heat flow from Earth's interior, for example, is only about a ten-thousandth of what it receives from the Sun.

It is not clear why Uranus has such a low internal heat output compared with the other Jovian planets. All the planets should have started warm, since gravitational energy was transformed into heat during planetary accretion. Over the age of the solar system, Earth and the other smaller objects have lost most of their heat of formation. Being massive objects with cold surfaces, however, the giant planets store heat well and radiate poorly. Therefore, they should have retained large fractions of their heat of formation, which should still be escaping today. Chance events (such as collisions with large bodies) experienced by some planets but not others at the time of their formation and the resulting differences in internal structure are one explanation proposed to explain differences among the giant planets such as the anomalous heat output of Uranus.

0 0

Post a comment