For access to specimens, I am grateful to the following people and institutions: Ross MacPhee and Darrin Lunde, Department of Mammalogy; Mark Norell, Malcolm McKenna, and John Alexander, Department of Vertebrate

Paleontology, American Museum of Natural History, New York; Larry Heaney and Bill Stanley, Field Museum of Natural History, Chicago; Richard Thorington and Linda Gordon, National Museum of Natural History, Washington, DC; Maria Rutzmoser, Museum of Comparative Zoology at Harvard University, Cambridge; Chris Beard, Carnegie Museum of Natural History, Pittsburgh; Marc Godinot, Christian de Muizon, Pascal Tassy; Brigitte Senut, Department of Paleontology, and Michel Tranier and Jacques Cuisin, Department of Mammalogy, Muséum national d'Histoire naturelle, Paris; Paula Jenkins, Natural History Museum, London; Chris Smeenk, Nationaal Natuurhistorisch Museum, Leiden; Louis de Roguin and Albert Keller, Muséum d'Histoire Naturelle, Geneva; Gerhard Storch, Forschungsinstitut Senckenberg, Frankfurt; Richard Kraft and Michael Hiermeier, Zoologische Staatssammlung, Munich; and Olavi Grönwall, Swedish Museum of Natural History, Stockholm. I thank Matt Ravosa and Marian Dagosto for inviting me to contribute to this volume, as well as for inviting me to present these data at the International Conference on Primate Origins and Adaptations: A Multidisciplinary Perspective. Thanks also to Larissa Swedell for her many helpful comments on previous drafts of this manuscript and thanks to Katie Binetti and Michael Muehlenbein for checking the character mapping in my Topics and Issues in Systematics graduate seminar. This work was funded by a National Science Foundation Doctoral Dissertation Improvement Grant (SBR-9616194), a Field Museum of Natural History Visiting Scholarship, a Sigma Xi Scientific Research Society Grant-in-Aid of Research, and a New York Consortium in Evolutionary Primatology graduate fellowship.

APPENDIX A Descriptions of Characters and Character States

1. Position of deltopectoral crest: anterior (0); lateral (1) (character #8 in Beard, 1993b).

2. Robusticity of lesser tuberosity: gracile, no strong medial protrusion (0); robust, strong medial protrusion (1) (character #9 in Beard, 1993b; chiropteran condition corrected by Simmons, 1994).

3. Shape of capitulum: spindle-shaped (0); spherical (1) (character #10 in Beard, 1993b).

4. Shape and degree of excavation of radial central fossa: ovoid and shallow (0); circular and deep (1) (character #11 in Beard, 1993b).

5. Extent of lateral lip around perimeter of proximal radius: broad, limited to lateral side (0); narrow, extends approximately halfway around (1) (character #12 in Beard, 1993b).

6. Form of ulnocarpal articulation: mediolaterally and dorsopalmarly extensive, lies in transverse plane (0); limited to radial and palmar aspects of distal ulna, lies in prox-imodistal plane (1) (character #13 in Beard, 1993b; chiropteran condition corrected by Stafford and Thorington, 1998).

7. Shape of cuneiform in dorsal view: quadrate (0); triangular (1) (character #14 in Beard, 1993b).

8. Spatial relationships of lunate and scaphoid: lunate ulnar to scaphoid (0); lunate distal to scaphoid (1) (character #15 in Beard, 1993b; dermopteran condition corrected by Stafford and Thorington, 1998).

9. Radial articular contacts of cuneiform: contact with single bone (lunate) (0); contact with two bones (1) (character #16 in Beard, 1993b; chiropteran, der-mopteran, and scandentian conditions corrected by Stafford and Thorington, 1998).

10. Size of pisiform: moderately robust (0); reduced (1) (character #17 in Beard, 1993b; chiropteran condition corrected by Simmons, 1994; and Stafford and Thorington, 1998).

11. Phalangeal proportions: proximal longer than intermediate (0); intermediate longer than proximal (1) (character #18 in Beard, 1993b; chiropteran condition corrected by Thewissen and Babcock, 1992; and Hamrick et al., 1999).

12. Shape of distal phalanges: moderately laterally compressed and moderately high dorsoventrally (0); highly compressed mediolaterally and tall dorsoventrally (1); mediolaterally wide and dorsoventrally flattened (2) (character #19 in Beard, 1993b; chiropteran condition corrected by Szalay and Lucas, 1993, 1996; Simmons, 1995; Lemelin, 2000).

13. Acetabular shape: circular in lateral view (0); elliptical, elongated craniocaudally (1) (character #20 in Beard, 1993b).

14. Pattern of bony buttressing around acetabulum: evenly developed around circumference (0); emphasized on cranial side (1) (character #21 in Beard, 1993b).

15. Position of fovea capitis femoris: centrally placed on femoral head (0); posterior to midline (1) (character #22 in Beard, 1993b).

16. Area of insertion of quadratus femoris: limited area on posterior side of proximal femoral shaft (0); enlarged, flattened, triangular area between greater and lesser trochanters (1) (character #23 in Beard, 1993b).

17. Shape of patellar groove: long, narrow, and moderately excavated (0); short, wide, and shallow (1); deeply excavated (2) (character #24 in Beard, 1993b).

18. Nature of distal tibiofibular joint: syndesmosis (0); synovial (1) (character #25 in Beard, 1993b).

19. Position of flexor fibularis groove on posterior side of astragalus: midline (0); lateral (1); groove absent (2) (character #26 in Beard, 1993b).

20. Secondary articulation between posterior side of sustentaculum and astragalus: absent (0); articulation between medial malleolus of tibia and posterior side of sustentaculum (1); present (2); sustentaculum reduced or absent (3) (character #27 in Beard, 1993b; recoded to reflect autapomorphous condition of sustentac-ulum in Scandentia).

21. Nature of calcaneocuboid articulation: cuboid facet on calcaneus moderately concave or flat, which articulates with calcaneal facet on cuboid that is evenly convex, oval, and elongated mediolaterally (0); plantar pit or concavity on distal calcaneus that articulates with proximally projecting process on cuboid (calcaneocuboid pivot) (1) (character #28 in Beard, 1993b).

22. Form of distal facet on entocuneiform: narrow distally (0); wide distally (1); entocuneiform proximodistally short with flat and triangular distal facet for first metatarsal (2) (character #29 in Beard, 1993b; the condition of the plantodistal process was excluded from these character states because its size does not correspond to the width of the distal entocuneiform facet as Beard, 1993b, originally proposed).

23. Size of atlas vertebra: craniocaudally narrow (0); craniocaudally wide (1) (see Sargis, 2001).

24. Shape of thoracic spinous processes: long and narrow (0); short and wide (1) (see Sargis, 2001).

25. Size of lumbar spinous processes: long (0); short (1) (see Sargis, 2001).

26. Size and orientation of lumbar transverse processes: long and face ventrally (0); short and face laterally (1) (see Sargis, 2001).

27. Shape of scapula: long and narrow (0); short and wide (1) (see Sargis, 2002a).

28. Size of greater trochanter: large (0); small (1) (see Sargis, 2002b).

29. Size of femoral condyles: anteroposteriorly deep (0); anteroposteriorly shallow (1) (see Sargis, 2002b).

30. Nature of volar skin: papillary ridges present (0); papillary ridges absent (1) (see Lemelin, 2000).

31. Shape of proximal articular surface on pedal intermediate phalanges: mediolaterally wide and dorsoplantarly compressed (0); dorsoplantarly high and mediolaterally compressed (1) (see Hamrick et al., 1999).

32. Size of cervical (C3-C7) spinous processes: long (0); short or absent (1) (see Simmons, 1995; Wible and Novacek, 1988).

33. Size of ribs: craniocaudally narrow (0); craniocaudally wide (1) (see Simmons, 1995; Szalay and Lucas, 1993, 1996; Wible and Novacek, 1988).

34. Size of forelimb: no elongation (0); markedly elongated (1) (see Simmons, 1995; Wible and Novacek, 1988).

35. Form of deltopectoral crest: shelf that extends distally (0); single torus displaced proximally (1) (see Simmons, 1995; Szalay and Lucas, 1993, 1996).

36. Humeropatagialis muscle: absent (0); present (1) (see Simmons, 1995; Wible and Novacek, 1988).

37. Form of proximal ulna: not reduced, contacts anterior humerus (0); reduced, anterior humeral contact reduced (disengagement) (1) (see Simmons, 1994, 1995; Szalay and Lucas, 1993, 1996; Wible and Novacek, 1988).

38. Form of distal radius and ulna: radius and ulna unfused, distal radius narrow, and no deep grooves for carpal extensors on dorsal surface of radius (0); radius and ulna fused, distal radius transversely widened, and deep grooves for carpal extensors on dorsal surface of radius (1) (see Simmons, 1995; Szalay and Lucas, 1993, 1996).

39. Fusion of carpals: unfused (0); fusion of scaphoid and lunate into scapholunate, centrale free (1); fusion of scaphoid, lunate, and centrale into scaphocentralunate (2) (see Simmons, 1995; Szalay and Lucas, 1993, 1996).

40. Patagium between manual digits: absent (0); present (1) (see Simmons, 1995; Szalay and Lucas, 1993, 1996; Wible and Novacek, 1988).

41. Size of fourth and fifth pedal rays: no elongation (0); elongated (1) (see Simmons, 1995; Szalay and Lucas, 1993, 1996).

42. Pedal digital tendon locking mechanism: absent (0); present (1) (see Simmons, 1995; Simmons and Quinn, 1994).

APPENDIX B Character-Taxon Matrix*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Scandentia 01110000100 11101110111 1 1 1 11 1 1 00 110000 01 000

Chiroptera 01000100101 11120002302 1 1 1 11 1 1 11 1111 1 1 12 1 11 Primates 111110000002111121101100000000000000000000 W

Micromomyidae 111110????? ? 1 1 1 1 1 ? 1 2 1 ? ? ? ? ? ? 1 1 ? ? ? ? 0 0 ? 0 0 ? ? ? ?

Plesiadapidae 1111100Í100 111 0011 12110? ? ? ? 11 ? 0 ? ? 0 0 ? 0 0 0 ? ? ?

Paromomyidae 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 2 1 1 ? ? ? ? ? 1 1 ? 1 ? ? 0 0 ? 0 0 ? ? ? ? ^

Dermoptera 01111110111 11111111211111111111 111111 12111 <g.

Outgroup 00000000000 00000000000000000000 000000 00000

*Characters 1 through 22 are from Beard (1993b). Character states in bold were coded differently in this analysis than in Beard's (1993b) study (see text and Appendix A).


Adkins, R. M., and Honeycutt, R. L., 1991, Molecular phylogeny of the superorder Archonta, Proc. Nat. Acad. Sci. 88: 10317-10321.

Adkins, R. M., and Honeycutt, R. L., 1993,. A molecular examination of archontan and chiropteran monophyly, in: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., Plenum Press, New York, pp. 227-249.

Allard, M. W., McNiff, B. E., and Miyamoto, M. M., 1996, Support for interordinal eutherian relationships with an emphasis on primates and their archontan relatives, Mol. Phylo. Evol. 5: 78-88.

Bailey, W. J., Slightom, J. L., and Goodman, M., 1992, Rejection of the "flying primate" hypothesis by phylogenetic evidence from the .E-globin gene, Science 256: 86-89.

Beard, K. C., 1989, Postcranial Anatomy, Locomotor Adaptations, and Paleoecology of Early Cenozoic Plesiadapidae, Paromomyidae, and Micromomyidae (Eutheria, Dermoptera), Ph.D. Dissertation, Johns Hopkins University.

Beard, K. C., 1990, Gliding behavior and paleoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera), Nature 345: 340-341.

Beard, K. C., 1991, Vertical postures and climbing in the morphotype of Primatomorpha: Implications for locomotor evolution in primate history, in: Origine(s) de la Bipedie chez les Hominides, Y. Coppens and B. Senut, eds., CNRS, Paris, pp. 79-87.

Beard, K. C., 1993a, Origin and evolution of gliding in Early Cenozoic Dermoptera (Mammalia, Primatomorpha), in: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., Plenum Press, New York, pp. 63-90.

Beard, K. C., 1993b, Phylogenetic systematics of the Primatomorpha, with special reference to Dermoptera, in: Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., Springer-Verlag, New York, pp. 129-150.

Bloch, J. I., and Silcox, M. T., 2001, New basicrania of Paleocene-Eocene Ignacius: Re-evaluation of the plesiadapiform-dermopteran link, Am. J. Phys. Anthro. 116: 184-198.

Bloch, J. I., Silcox, M. T., and Sargis, E. J., 2002, Origin and relationships of Archonta (Mammalia, Eutheria): Re-evaluation of Eudermoptera and Primatomorpha, J. Vert. Paleo. 22 (Supp. to No. 3): 37A.

Butler, P. M., 1972, The problem of insectivore classification, in: Studies in Vertebrate Evolution, K. A. Joysey and T. S. Kemp, eds., Oliver and Boyd, Edinburgh, pp. 253-265.

Butler, P. M., 1980, The tupaiid dentition, in: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., Plenum Press, New York, pp. 171-204.

Campbell, C. B. G., 1966a, Taxonomic status of tree shrews, Science 153: 436.

Campbell, C. B. G., 1966b, The relationships of the tree shrews: The evidence of the nervous system, Evolution 20: 276-281.

Campbell, C. B. G., 1974, On the phyletic relationships of the tree shrews, Mamm. Rev. 4: 125-143.

Carlsson, A., 1922, Über die Tupaiidae und ihre Beziehungen zu den Insectivora und den Prosimiae, Acta Zool., Stockholm 3: 227-270.

Cartmill, M., and MacPhee, R. D. E., 1980, Tupaiid affinities: The evidence of the carotid arteries and cranial skeleton, in: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., Plenum Press, New York, pp. 95-132.

Chopra, S. R. K., and Vasishat, R. N., 1979, Sivalik fossil tree shrew from Haritalyangar, India, Nature 281: 214-215.

Chopra, S. R. K., Kaul, S., and Vasishat, R. N., 1979 Miocene tree shrews from the Indian Sivaliks, Nature 281: 213-214.

Cronin, J. E., and Sarich, V. M., 1980, Tupaiid and Archonta phylogeny: The macro-molecular evidence, in: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., Plenum Press, New York, pp. 293-312.

Dutta, A. K., 1975, Micromammals from Siwaliks, Indian Minerals 29: 76-77.

Emmons, L. H., 2000, Tupai: A Field Study ofBornean Treeshrews, Berkeley: University of California Press.

Goodman, M., Bailey, W. J., Hayasaka, K., Stanhope, M. J., Slightom, J., and Czelusniak, J., 1994, Molecular evidence on primate phylogeny from DNA sequences, Am. J. Phys. Anthro. 94: 3-24.

Gould, E., 1978, The behavior of the moonrat, Echinosorexgymnurus (Erinaceidae) and the pentail tree shrew, Ptilocercus lowii (Tupaiidae) with comments on the behavior of other Insectivora, Zeit. Tierpsychologie 48: 1-27.

Graur, D., Duret, L., and Gouy, M., 1996, Phylogenetic position of the order Lagomorpha (rabbits, hares and allies), Nature 379: 333-335.

Gregory, W. K., 1910, The orders of mammals, Bull. Am. Mus. Nat. Hist. 27: 1-524.

Haeckel, E., 1866, Generelle Morphologie der Organismen, Berlin: Georg Reimer.

Hamrick, M. W., Rosenman, B. A., and Brush, J. A., 1999, Phalangeal morphology of the Paromomyidae (?Primates, Plesiadapiformes): The evidence for gliding behavior reconsidered, Am. J. Phys. Anthro. 109: 397-413.

Honeycutt, R. L., and Adkins, R. M., 1993, Higher level systematics of eutherian mammals: An assessment of molecular characters and phylogenetic hypotheses, Ann. Rev. Ecol. Syst. 24: 279-305.

Jacobs, L. L., 1980, Siwalik fossil tree shrews, in: Comparative Biology and Evolutionary Relationships ofTreeShrews, W. P. Luckett, ed., Plenum Press, New York, pp. 205-216.

Jane, J. A., Campbell, C. B. G., and Yashon, D., 1965, Pyramidal tract: A comparison of two prosimian primates, Science 147: 153-155.

Johnson, J. I., and Kirsch, J. A. W., 1993, Phylogeny through brain traits: Interordinal relationships among mammals including Primates and Chiroptera, in: Primates and

Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., Plenum Press, New York, pp. 293-331.

Kay, R. F., Thorington, R. W., and Houde, P., 1990, Eocene plesiadapiform shows affinities with flying lemurs not primates, Nature 345: 342-344.

Kay, R. F., Thewissen, J. G. M., and Yoder, A. D., 1992, Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes, Am. J. Phys. Anthro. 89: 477-498.

Killian, J. K., Buckley, T. R., Stewart, N., Munday, B. L., and Jirtle, R. L., 2001, Marsupials and eutherians reunited: Genetic evidence for the Theria hypothesis of mammalian evolution, Mamm. Genome 12: 513-517.

Krause, D. W., 1991, Were paromomyids gliders? Maybe, maybe not, J. Hum. Evol. 21: 177-188.

Kriz, M., and Hamrick, M. W., 2001, The postcranial evidence for primate superordinal relationships, Am. J. Phys. Anthro. Supp. 32: 93.

Le Gros Clark, W. E., 1924a, The myology of the tree shrew (Tupaia minor), Proc. Zool. Soc. London 1924: 461-497.

Le Gros Clark, W. E., 1924b, On the brain of the tree shrew (Tupaia minor), Proc. Zool. Soc. London 1924: 1053-1074.

Le Gros Clark, W. E., 1925, On the skull of Tupaia, Proc. Zool.. Soc. London 1925: 559-567.

Le Gros Clark, W. E., 1926, On the anatomy of the pen-tailed tree shrew (Ptilocercus lowii), Proc. Zool. Soc. London 1926: 1179-1309.

Le Gros Clark, W. E., 1927, Exhibition of photographs of the tree shrew (Tupaia minor). Remarks on the tree shrew, Tupaia minor, with photographs, Proc. Zool. Soc. London 1927: 254-256.

Lemelin, P., 2000, Micro-anatomy of the volar skin and interordinal relationships of primates, J. Hum. Evol. 38: 257-267.

Liu, F.-G. R., and Miyamoto, M. M., 1999, Phylogenetic assessment of molecular and morphological data for eutherian mammals, Syst. Biol. 48: 54-64.

Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel K. F., 2001, Molecular and morphological supertrees for eutherian (placental) mammals, Science 291: 1786-1789.

Luckett, W. P., ed., 1980, Comparative Biology and Evolutionary Relationships of Tree Shrews, Plenum Press, New York.

MacPhee, R. D. E., 1981, Auditory Regions of Primates and Eutherian Insectivores: Morphology, Ontogeny, and Character Analysis, Karger, Basel.

MacPhee, R. D. E., ed., 1993, Primates and Their Relatives in Phylogenetic Perspective, Plenum Press, New York.

Maddison, D. R., and Maddison, W. P., 2001, MacClade 4: Analysis of Phylogeny and Character Evolution, Version 4.03. Sinauer Associates, Sunderland, Massachusetts.

Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R W., Adkins, R. M., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S., 2001, Parallel adaptive radiations in two major clades of placental mammals, Nature 409: 610-614.

Martin, R. D., 1966, Tree shrews: Unique reproductive mechanism of systematic importance, Science 152: 1402-1404.

Martin, R. D., 1968a, Towards a new definition of primates, Man 3: 377-401.

Martin, R. D., 1968b, Reproduction and ontogeny in tree shrews (Tupaia belangeri), with reference to their general behavior and taxonomic relationships, Zeit. Tierpsychologie 25: 409-532.

Martin, R. D., 1990, Primate Origins and Evolution, Princeton University Press, Princeton.

McKenna, M. C., 1966, Paleontology and the origin of the primates, Folia Primatol. 4: 1-25.

McKenna, M. C., 1975, Toward a phylogenetic classification of the Mammalia, in: Phylogeny of the Primates: A Multidisciplinary Approach, W. P. Luckett and F. S. Szalay, eds., Plenum Press, New York, pp. 21-46.

McKenna, M. C., and Bell, S. K., 1997, Classification of Mammals Above the Species level. Columbia University Press, New York.

Mein, P., and Ginsburg, L., 1997, Les mammifères du gisement miocène inférieur de Li Mae Long, Thailande: Systématique, biostratigraphie et paléoenvironnement, Geodiversitas 19: 783-844.

Miyamoto, M. M., 1996, A congruence study of molecular and morphological data for eutherian mammals, Mol. Phylo. Evol. 6: 373-390.

Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J., 2001a, Molecular phylogenetics and the origins of placental mammals, Nature 409:614-618.

Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E. C., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S., 2001b, Resolution of the early placental mammal radiation using Bayesian phylo-genetics, Science 294: 2348-2351.

Napier, J. R., and Napier, P. H., 1967, A Handbook of Living Primates, Academic Press, London.

Ni, X., and Qiu, Z., 2002, The micromammalian fauna from the Leilao, Yuanmou hominoid locality: Implications for biochronology and paleoecology, J. Hum. Evol. 42: 535-546.

Novacek, M. J., 1980, Cranioskeletal features in tupaiids and selected Eutheria as phy-logenetic evidence, in: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., Plenum Press, New York, pp. 35-93.

Novacek, M. J., 1982, Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny, in: Macromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., Plenum Press, New York, pp. 3-41.

Novacek, M. J., 1986, The skull of leptictid insectivorans and the higher-level classification of eutherian mammals, Bull. Am. Mus. Nat. Hist. 183: 1-112.

Novacek, M. J., 1989, Higher mammal phylogeny: The morphological-molecular synthesis, in: The Hierarchy of Life, B. Fernholm, K. Bremer, and H. Jornvall, eds., Elsevier, Amsterdam, pp. 421-435.

Novacek, M. J., 1990, Morphology, paleontology, and the higher clades of mammals, in: Current Mammalogy, H. H. Genoways, ed., Plenum Press, New York, pp. 507-543.

Novacek, M. J., 1992, Mammalian phylogeny: Shaking the tree, Nature 356: 121-125.

Novacek, M. J., 1993, Reflections on higher mammalian phylogenetics, J. Mamm. Evol. 1: 3-30.

Novacek, M. J., 1994, Morphological and molecular inroads to phylogeny, in: Interpreting the Hierarchy of Nature, L. Grande and O. Rieppel, eds., Academic Press, New York, pp. 85-131.

Novacek, M. J., and Wyss, A. R., 1986, Higher-level relationships of the recent eutherian orders: Morphological evidence, Cladistics 2: 257-287.

Novacek, M. J., Wyss, A. R., and McKenna, M. C., 1988, The major groups of eutherian mammals, in: The Phylogeny and Classification of the Tetrapods, vol. 2: Mammals, M. J. Benton, ed., Clarendon Press, Oxford, pp. 31-71.

Porter, C. A., Goodman, M., and Stanhope, M. J., 1996, Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene, Mol. Phylo. Evol. 5: 89-101.

Qiu, Z., 1986, Fossil tupaiid from the hominoid locality of Lufeng, Yunnan, Vertebrata PalAsiatica 24: 308-319.

Sargis, E. J., 1999, Tree shrews, in: Encyclopedia of Paleontology, R. Singer, ed., Fitzroy Dearborn, Chicago, pp. 1286-1287.

Sargis, E. J., 2000, The Functional Morphology of the Postcranium of Ptilocercus and Tupaiines (Scandentia, Tupaiidae): Implications for the Relationships of Primates and other Archontan Mammals, Ph.D. Dissertation, City University of New York.

Sargis, E. J., 2001, A preliminary qualitative analysis of the axial skeleton of tupaiids (Mammalia, Scandentia): Functional morphology and phylogenetic implications, J. Zool. London 253: 473-483.

Sargis, E. J., 2002a, Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications, J. Morph. 253: 10-42.

Sargis, E. J., 2002b, Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications, J. Morph. 254: 149-185.

Sargis, E. J., 2002c, A multivariate analysis of the postcranium of tree shrews (Scandentia, Tupaiidae) and its taxonomic implications, Mammalia 66: 579-598.

Sargis, E. J., 2002d, The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae): An analysis of primatomorphan and volitantian characters, J. Mamm. Evol. 9: 137-160.

Schmitz, J., Ohme, M., and Zischler, H., 2000, The complete mitochondrial genome of Tupaia belangeri and the phylogenetic affiliation of Scandentia to other euther-ian orders, Mol. Biol. Evol. 17: 1334-1343.

Shoshani, J., and McKenna, M. C., 1998, Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data, Mol. Phylo. Evol. 9: 572-584.

Shoshani, J., Groves, C. P., Simons, E. L., and Gunnell, G. F., 1996, Primate phy-logeny: Morphological vs molecular results, Mol. Phylo. Evol. 5: 102-154.

Silcox, M. T., 2001a, A phylogenetic analysis of Plesiadapiformes and their relationship to euprimates and other archontans, J. Vert. Paleo. 21 (Supp. to No. 3): 101A.

Silcox, M. T., 2001b, A Phylogenetic Analysis ofPlesiadapiformes and Their Relationship to Euprimates and Other Archontans, Ph.D. Dissertation, Johns Hopkins University.

Silcox, M. T., 2002, The phylogeny and taxonomy of plesiadapiforms, Am. J. Phys. Anthro. (Supp.) 34: 141-142.

Simmons, N. B., 1994, The case for chiropteran monophyly, Am. Mus. Novitates 3103: 1-54.

Simmons, N. B., 1995, Bat relationships and the origin of flight, Symp. Zool. Soc. London 67: 27-43.

Simmons, N. B., and Quinn, T. H., 1994, Evolution of the digital tendon locking mechanism in bats and dermopterans: A phylogenetic perspective, J.Mamm. Evol. 2:231-254.

Simpson, G. G., 1945, The principles of classification and a classification of mammals, Bull. Am. Mus. Nat. Hist. 85: 1-350.

Smith, J. D., and Madkour, G., 1980, Penial morphology and the question of chiropteran phylogeny, in: Proceedings of the Fifth International Bat Research Conference, D. E. Wilson and A. L. Gardner, eds., Texas Tech Press, Lubbock Texas, pp. 347-365.

Stafford, B. J., and Thorington, R. W., 1998, Carpal development and morphology in archontan mammals, J. Morph. 235: 135-155.

Stanhope, M. J., Bailey, W. J., Czelusniak, J., Goodman, M., Si, J.-S., Nickerson, J., Sgouros, J. G., Singer, G. A. M., and Kleinschmidt, T. K., 1993, A molecular view of primate supraordinal relationships from the analysis of both nucleotide and amino acid sequences, in: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., Plenum Press, New York, pp. 251-292.

Stanhope, M. J., Smith, M. R., Waddell, V. G., Porter, C. A., Shivji, M. S., and Goodman, M., 1996, Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: Convincing evidence for several superordinal clades, J. Mol.. Evol. 43: 83-92.

Steele, D. G., 1973, Dental variability in the tree shrews (Tupaiidae), in: Craniofacial Biology of Primates: Symposium of the IVth International Congress of Primatology, vol. 3, M. R. Zingeser, ed., Karger, Basel, pp. 154-179.

Swofford, D. L., 1993, PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Smithsonian Institution, Washington, DC.

Szalay, F. S., 1968, The beginnings of primates, Evolution 22: 19-36.

Szalay, F. S., 1969, Mixodectidae, Microsyopidae, and the insectivore-primate transition, Bull. Am. Mus. Nat. Hist. 140: 193-330.

Szalay, F. S., 1977, Phylogenetic relationships and a classification of the eutherian Mammalia, in: Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., Plenum Press, New York, pp. 315-374.

Szalay, F. S., 1999, Review of "Classification of Mammals Above the Species Level" by M. C. McKenna and S. K. Bell, J. Vert. Paleo. 19: 191-195.

Szalay, F. S., and Drawhorn, G., 1980, Evolution and diversification of the Archonta in an arboreal milieu, in: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., Plenum Press, New York, pp. 133-169.

Szalay, F. S., and Lucas, S. G., 1993, Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta, in: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., Plenum Press, New York, pp. 187-226.

Szalay, F. S., and Lucas, S. G., 1996, The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals, Bull. New Mexico Mus. Nat. Hist.. Sci. 7: 1-47.

Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., and Stanhope, M. J., 2000, Molecular evidence regarding the origin of echolocation and flight in bats, Nature 403: 188-192.

Thewissen, J. G. M., and Babcock, S. K., 1991, Distinctive cranial and cervical innervation of wing muscles: New evidence for bat monophyly, Science 251: 934-936.

Thewissen, J. G. M., and Babcock, S. K., 1992, The origin of flight in bats, Bioscience 42: 340-345.

Thewissen, J. G. M., and Babcock, S. K., 1993, The implications of the propatagial muscles of flying and gliding mammals for archontan systematics, in: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., Plenum Press, New York, pp. 91-109.

Tong, Y., 1988, Fossil tree shrews from the Eocene Hetaoyuan Formation of Xichuan, Henan, Vertebrata PalAsiatica 26: 214-220.

Van Valen, L. M., 1965, Tree shrews, primates, and fossils, Evolution 19: 137-151.

Waddell, P. J., Okada, N., and Hasegawa, M., 1999, Towards resolving the interordinal relationships of placental mammals, Syst. Biol. 48: 1-5.

Wagner, J. A., 1855, Die Säugethiere in Abbildungen nach der Natur.: Weiger, Leipzig, Wagner 1855 Supplementband, Abt. 5: 1-810.

Wible, J. R., 1993, Cranial circulation and relationships of the colugo Cynocephalus (Dermoptera, Mammalia), Am. Mus. Novitates 3072: 1-27.

Wible, J. R., and Covert, H. H., 1987, Primates: Cladistic diagnosis and relationships, J. Hum. Evol. 16: 1-22.

Wible, J. R., and Martin, J. R., 1993, Ontogeny of the tympanic floor and roof in archontans, in: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., Plenum Press, New York, pp. 111-148.

Wible, J. R., and Novacek, M. J., 1988, Cranial evidence for the monophyletic origin of bats, Am. Mus. Novitates 2911: 1-19.

Wible, J. R., and Zeller, U. A., 1994, Cranial circulation of the pen-tailed tree shrew Ptilocercus lowii and relationships of Scandentia, J. Mamm. Evol. 2: 209-230.

Wilson, D. E., 1993, Order Scandentia, in: Mammal Species of the World: A Taxonomic and Geographic Reference, 2nd ed., D. E. Wilson and D. M. Reeder, eds., Smithsonian Institution Press, Washington, pp. 131-133.

Wöhrmann-Repenning, A., 1979, Primate characters in the skull of Tupaiaglis and Urogale everetti (Mammalia, Tupaiiformes), Senck. Biologica 60: 1-6.

Zeller, U. A., 1986a, Ontogeny and cranial morphology of the tympanic region of the Tupaiidae, with special reference to Ptilocercus, Folia Primatol. 47: 61-80.

Zeller, U. A., 1986b, The systematic relations of tree shrews: Evidence from skull morphogenesis, in: Primate Evolution, J. G. Else and P. C. Lee, eds., Cambridge University Press, Cambridge, pp. 273-280.

Zeller, U. A., 1987, Morphogenesis of the mammalian skull with special reference to Tupaia, in: Morphogenesis of the Mammalian Skull, H. J. Kuhn and U. A. Zeller, eds., Verlag Paul Parey, Hamburg, pp. 17-50.

0 0

Post a comment