2. S.J. Mojzsis, G. Arrhenius, K.D. McKeegan, T.M. Harrison, A.P. Nutman and C.R.L. Friend, Nature 384 (1996) 55.

3. K.A. Maher and D.J. Stevenson, Nature 331 (1988) 612.

4. C.F. Chyba, Geochim.Cosmochim.Acta 57 (1993) 3351.

5. H.D. Holland, The chemical evolution of the atmosphere and oceans. Princeton Univ. Press. (1984)

8. J. Oro, T. Mills and A. Lazcano. Orig. Life Evol. Biosph. 21 (1992) 267

9. G.J. Flynn, Earth, Moon and Planets 72 (1996) 469.

10. L.J. Allamandola, S.A. Sandford and G.J. Valero, Icarus 76 (1988) 225.

11. J.M. Greenberg, W.A. Schutte and A. Li, Adv. Space Res. 23 (1999) 289.

12. R.L. Hudson and M.H. Moore. Icarus 140 (1999) 451.

13. W.M. Irvine, Orig. Life Evol. Biosph. 28 (1998) 365.

14. K. Kobayashi, T. Kaneko and T. Saito, Adv. Space Res. 24 (1999) 461.

15. K. Kobayashi, T. Kasamatsu T. Kaneko, J.Koike, T. Oshima, T. Saito, T. Yamamoto and H. Yanagawa, Adv.Space Res., 16 (1995) 21.

16. T. Kasamatsu, T. Kaneko, T. Saito and K. Kobayashi, Bull.ChemSoc.Jpi. 70 (1997) 1021.

17. K. Kobayashi and T. Tsuji, Chemistry Letters (1997) 903.

18. E.A. Kuzicheva, M.B. Simakov, I.L. Mal'ko, N.Y. Dodonova and N.B. Gontareva, Adv.Space Res. 18 (1996) 65.

19. M.B. Simakov, E.A. Kuzicheva, and I.L. Malko, Adv.Space Res. 19 (1997) 1059.

20. E.A. Kuzicheva, V.F. Zhukova M.B. Simakov, Zhurn. Evol. Biokh.ifisiol. 29 (1993) 339.

21. R. Reimann and G. Zubay, Orig. Life Evol. Biosph. 29 (1999) 229.

22. M.B. Simakov, E.A. Kuzicheva, I.L. Mal'ko and N.Y. Dodonova, Adv.Space Res. 18

23. M.B. Simakov, E.A. Kuzicheva, N.Y. Dodonova and A.E. Antropov, Adv.Space Res. 19

24. E.A. Kuzicheva and M.B. Simakov, Adv.Space Res. 23 (1999) 387.

25. V.A. Basiuk and J. Douda, Planet.Space Sci. 47 (1999) 577.

Microanalysis of cosmic dust - Prospects and challenges.

G.A. Graham2, A.T. Kearsleyb, M.J. Burchellc, J.A. Creightond and LP. Wright3.

"Planetary and Space Science Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.

bSpace Science Research, School of BMS, Oxford Brookes University, Headington, Oxford OX3 OBP, UK.

cUnit for Space Sciences & Astrophysics, School of Physical Sciences, University of Kent, Canterbury CT2 7NR, UK.

dChemistry, School of Physical Sciences, University of Kent, Canterbury CT2 7NR, UK.

Our laboratory experiments have used a light gas gun to accelerate olivine mineral grains to 5.1 km/s prior to their impact upon, and capture within, aerogel (density 96 kg m"3). The composition and mineralogy of the trapped particles were investigated using the nondestructive techniques of raman spectroscopy and analytical scanning electron microscopy. The raman spectra obtained for an impacted olivine show wider peak width than those obtained from the analysis of a pristine grain, this may indicate that the particles do undergo a degree of alteration at the crystallographic scale during the impact event.

Was this article helpful?

0 0

Post a comment