1. E. Igenbergs, S. Sasaki, R. Muenzenmayer, H. Ohashi, G. Faerber, F. Fischer, A, Fujiwara, A. Glasmachers, E. Grün and Y. Hamabe, Earth Planets Space 50 (1998) 241.

2. S. Soter, Rep. Center Radiophys. Space Res. 462 (1971).

3. M. Horänyi, J.A. Burns and M. Tatrallyay, Geophys. Res. Lett. 17 (1990) 853.

4. A. Juhäsz, M. Tatrallyay, G. Gevai and M.J. Horanyi, Geophys. Res. 98 (1993) 1205.

5. S. Sasaki, in Proc. 26th ISAS Lunar Planet. Symp. (1993) 40.

6. S. Sasaki, in Proc. 27th ISAS Lunar Planet. Symp. (1994) 47.

7. H. Ishimoto and T. Mukai, Planet. Space Sei. 42 (1994) 691.

8. S. Sasaki, in Physics, Chemistry, and Dynamics of Interplanetary Dust. ASP Conf. 104, (1996) 187.

11. A. V. Krivov and D. P. Hamilton, Icarus 128 (1997) 335.

12. E. Igenbergs, A. Hüdepohl, K. Uesugi, T. Hayashi, H. Svedhem, H. Iglseder, G. Koller, A. Glasmachers, E. Grün, G. Schwehm, H. Mizutani, T. Yamamoto, A. Fujimura, N. Ishii, H. Araki, K. Yamakoshi and K. Nogami, in Origin and Evolution of Interplanetary Dust (eds. A. C. Levasseur-Regourd and H. Hasegawa) Kluwer, Dordrecht (1991) 15.

13. E. Grün, B. Gustafson, I. Mann and M. Baguhl, Astron. Astrophys. 286 (1994) 915.

Dust Telescope: A new tool for dust research.

Eberhard Grüna, Harald Krüger*, Ralf Sramaa, Sascha Kempf, Siegfried Auerb, Luigi Colangeli0, Mihaly Horanyid, Peter Withnelld, Jochen Kissel0, Markus Landgraf*, and Hakan Svedhem8.

aMax Planck Institut für Kernphysik, Postfach 10 39 80, 69029 Heidelberg, Germany bA&M Associates, Basye, VA 22810-0421, USA

cOsservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 8030909392, USA

cMax Planck Institut für Extraterrestrische Physik, Giessenbachstrasse, D-87540 Garching, Germany fESA/ESOC, Robert-Bosch-Strasse 5, 64293 Darmstadt, Germany

8ESA/ESTEC, PB 299, NL-2200AG Noordwijk, The Netherlands

Dust particles in space carry information about their birth at a remote site in space and time not accessible to direct investigation. When we know where dust particles come from, we can derive from their state and composition important knowledge about the processes by which they were formed. This information can be gained by a combination of trajectory analysis together with the physical and chemical analysis of dust particles. Potential targets of a dust telescope can be interstellar dust phenomena (e.g. local interstellar medium or dusty stellar systems like beta-Pictoris), interplanetary phenomena (e.g. meteor stream dust, cometary, or asteroidal dust, or dust from the moon), or even space debris (e.g. fine grains from solid rocket bums). It is proposed to use aim2 dust telescope with 50° aperture. Such an instrument would detect 5 and 0.5 interplanetary dust grains of 10"15 g and 10"12 g per day, respectively. A state-of-the-art dust telescope consists of an array of parallel mounted dust analyzers. Potential components are a high resolution impact mass spectrometer, a dust analyzer for the determination of physical and chemical dust properties, a dust momentum sensor, and a large-area impact detector with trajectory analysis. A first example of such a dust telescope is carried by the proposed Galactic DUNE mission. The goal of DUNE is the analysis of interstellar grains near Earth.

Was this article helpful?

0 0

Post a comment