References

1. Ch. Leinert and E. Grün, in Physics and Chemistry in Space (Eds.: R. Schwenn & E. Marsch) Springer-Verlag, Berlin (1990) 207.

2. Ch. Leinert, S. Bowyer, L.K. Haikala et al., A&A Supp. 127 (1998) 1.

3. S.L. Wheelock, T.N. Gautier, J. Chiliemi et al., IRAS ISSA Explanatory Supplement, JPL, Pasadena, (1994).

4. T. Kelsall, J.L. Weiland, B.A. Franz, W.T. Reach, R.G. Arendt, E. Dwek, H.T.

Figure 9. ISOPHOT-S spectra of the zodiacal light. Left panel: template spectra derived by averaging the individual spectra in each of the sky segments defined in Fig. 8a. The temperature values are derived from blackbody fits. Right panel: residuals of the blackbody fits.

Wavelength [micron]

Figure 9. ISOPHOT-S spectra of the zodiacal light. Left panel: template spectra derived by averaging the individual spectra in each of the sky segments defined in Fig. 8a. The temperature values are derived from blackbody fits. Right panel: residuals of the blackbody fits.

Freudenreich, M.G. Hauser, S.H. Moseley, N.P. Odegard, R.F. Siverberg, and E.L. Wright, ApJ 508 (1998) 44

6. W.T. Reach, in Proc. of Diffuse Infrared Radiation and the IRTS, ASP Conference Series 124 (1997) 33

7. M.F. Kessler, J.A. Steinz, M.E. Anderegg et al., A&A 315 (1996) L27.

8. T. Ootsubo, T. Onaka, I. Yamamura et al., Advances in Space Research 25 (2000) 2163

9. U. Klaas, D. Lemke, T. Kranz et al., in Proc. of the SPIE Infrared Astronomical Instrumentation Conference (Ed.: A.M. Fowler) SPIE 3354 (1998) 996.

12. S. Bogun, D. Lemke, U.Klaas et al. A&A 315 (1996) L71.

13. R. Siebenmorgen, A. Abergel, B. Altieri et al. A&A 315 (1996) L169.

14. C. Gabriel, J. Acosta-Pulido, I. Heinrichsen, D. Skaley, H. Morris, W.-M. Tai, in Proc. of the ADASS VI conference (Eds.: G. Hunt, H.E. Payne), ASP Conf.Ser. 125 (1997) 108

15. E.K. Holmes, S.F. Dermott, in Proc. of ISO Beyond Point Sources (Eds. R.J. Laureijs, K.Leech, M.F. Kessler), ESA SP-445 (2000) 67

16. E. Grün, H.A. Zook, H. Fechig, R.H. Giese, Icarus 62 (1985) 244

18. F. Low, D. Beintema, F.N. Gautier et al., ApJ 278 (1984) L19.

19. W.T. Reach, B.A. Franz, J.L. Weiland, Icarus 127 (1997) 461

21. S.F. Dermott, P.D. Nicholson, J.A. Burns, J.R. Houck, Nature 312 (1984) 505.

22. S.F. Dermott, D.D. Durda, B.A.S. Gustafson et al., in Asteroids, Comets, Meteors (Eds.: A. Milani, M. Martini, A. Cellino) Kluwer, Dordrecht (1993) 127

23. S.F. Dermott, S. Jayaraman, Y.L. Xu, B.A.S. Gustafson, L.C. Liou, Nature 369 (1994) 719

24. M.V. Sykes, L.A. Lebofsky, D.M. Hunten, F. Low, Science 232 (1986) 1115.

25. M.V. Sykes, D.J. Lien, R.G. Walker, Icarus 86 (1990) 236

26. T. Mukai, in Highlights of Astronomy 8 (1989) 305

27. J.K. Davies, M.V. Sykes, W.T. Reach et al., Icarus 127 (1997) 251

29. P. Abraham, Ch. Leinert, D. Lemke, A&A 328 (1997) 702

30. T.B. Soifer, J.R. Houck, M. Harwit, ApJ 168 (1971) 73

31. S.D. Price, T.L. Murdock, L.P. Marcotte, AJ 85 (1980) 765

33. A. Salama, P. Andreani, G. Dall'Oglio et al., AJ 93 (1987) 467

34. D.A. Briotta Jr., Ph D. Thesis, Cornell Univ., Cornell, (1976) 1

35. W.T. Reach, A. Abergel, F. Boulanger et al., A&A 315 (1996) L381

Ill Interplanetary Dust

This Page Intentionally Left Blank

Light scattering and the nature of interplanetary dust A.Chantal Levasseur-Regourd

Université Paris 6 / Aéronomie CNRS, BP 3, Verrières, 91371 France

Observations of the solar light scattered by interplanetary dust particles provide information about their physical properties. It is clear, from polarisation observations, that the nature of the dust particles is not the same everywhere, and that it depends upon their distance to the Sun. It is quite likely, from the shapes of the polarisation phase curves, that the dust cloud is built up of irregularly shaped compact particles or aggregates, the average size of which is greater than a few micrometers.

Laboratory measurements represent a most promising approach to derive physical properties of the dust from some key parameters, such as the minimum, inversion and maximum regions in the phase curves, as well as the polarisation-wavelength dependence or the polarisation-albedo dependence. From comparisons with other dust populations, with light scattering computations, and with laboratory measurements, it may already be assumed that the interplanetary dust is built up of both compact particles (possibly of asteroidal origin) and of absorbing fluffy aggregates (possibly of cometary origin). Changes in the properties of the dust most likely result from the relative location of these sources, and from the evolution with time of the fragile dust particles.

Was this article helpful?

0 0

Post a comment